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Toute la splendeur respire là)1 dans če tričotaǧe
(tout en čontrepoint ornemental, dont
l’oriǧine pour moi ne peut
pas faire de doute :
la nature !).

Les furtifs, Alain Damasio

1Bien entendu, ceci n’est pas une ode à cette thèse, mais à la beauté du monde et des mathématiques.





Abstract

Given the pace at which quantum hardwares evolve,
Society will surely face a problem to solve.

Imagine a few opulent quantum servers
Admired by the crowd of classical users.

Among them—can you see?—the poor Alice crying:
“This computer is too slow, what a bad timing!”

With a malicious sight, a rich quantum server
Kindly comes to Alice, offering to serve her.

But to the humble Alice, can we guarantee
That the price to pay, won’t be her liberty?

Throughout this thesis, carefully, we will ensure
The computation, to the server stays obscure.

To lighten our walkway, we will craft a candle
That classically counterfeits a quantum channel.

To strike the fatal blow against the terror
We require the help of “Learning With Errors”.

Sadly we uncover an abrupt disclosure:
No such protocols are composably secure.

In our quest of equity, we got a surprise:
Multiple clients can together socialize

And on quantum states we can prove non-trivial facts
With a single message, keeping the state intact.
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Detailed Abstract

Quantum computers are the Holy Grail of many scientists: they promise sur-
prising powers of computation by exploiting the stunning physical properties of
infinitesimally small particles. The first quantum computers will certainly be

extremely expensive; consequently, their services will (probably) be made available online,
similar to popular classical “cloud” providers.

However, a company owning a secret high-value algorithm will undoubtedly try to
protect it against a dubious cloud provider: it is thus of utmost importance to provide
to the users guarantees on the privacy of their data. Multiple protocols already allow a
weakly quantum client to delegate a computation on a remote quantum server by making
sure that the server is blind, meaning that they cannot learn the input, the output, and
the algorithm used by the client. But the client needs to be able to send quantum states
to the server, which is a strong requirement as quantum communication is extremely
challenging to achieve. Removing this constraint is therefore of paramount importance.

In this thesis, we will see how a purely classical client can use the computational
resources of a quantum server, so that the performed computation is never revealed to the
server. To this end, we develop the first protocol that can generate on a remote server a
quantum state that is only known to the client. This modular tool allows us to classically
fake a quantum channel, and can be used in particular to do classical-client blind quantum
computing. We also provide constructions to more efficiently craft multi-qubit states.

In our protocol, we need to design a specific cryptographic family of functions having
several properties. We propose a construction based on the Learning With Error problem,
and provide a careful analysis of the parameters.

We also prove that there is no protocol secure in a generally composable model that
can classically fake a quantum channel. A similar impossibility result also applies to the
classical-client blind quantum protocols based on the “UBQC” protocol.

In addition to delegated computation, we show that our module also turns out to be
useful to perform a task that might seem impossible to achieve at first sight: proving
advanced properties on a sent quantum state in a non-interactive and non-destructive
way, including when this state is generated collaboratively by several participants. This
can be seen as a quantum analogue of classical Non-Interactive Zero-Knowledge proofs.
The set of properties that are verifiable is highly non trivial—we can prove any property
on the set of entangled qubits—and this could have numerous applications, for instance
to filter participants in a protocol without revealing their identity.
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How To Read This Thesis

I wanted this thesis to be as much self-contained as possible, so that it can be under-
standable (and verifiable) by readers having either a quantum or a classical background.
At the same time, I wanted to allow the reader to quickly grasp the fundamental ideas
behind our methods without being overwhelmed by details. As a result, each chapter
starts with a short description of our approach, hopefully as self-contained as possible.
We encourage the hurried reader to directly move to these overviews. The dependency
relation between the chapters is pictured in Figure 1.1.

Do I need to learn the ZX-calculus? I recently discovered the joy of diagrammatic
reasoning, with notably the ZX-calculus. Despite its frightening name, it allows to
simplify significantly the computations and provides a greater intuition of what is
happening. Unfortunately, it is not yet used extensively across the quantum community.
Nevertheless, I chose to replace some dirty linear algebra computations with nicer
diagrammatic computations: it turns out to be particularly profitable, notably to explain
both the correctness and security of the UBQC protocol and to simplify our proofs.
However, the reader really reluctant to learn the ZX-calculus does not fundamentally
need it. All the proofs can be rewritten using standard linear algebra.

Do I need to understand UBQC? The UBQC protocol is used to achieve blind
delegated quantum computing when a quantum channel is available. One of our main
contribution is a protocol—called QFactory—that fakes a quantum channel using a purely
classical channel: QFactory is then used modularly to replace the quantum channel in
UBQC. Therefore, it is not necessary to understand UBQC to understand QFactory. But
we also prove multiple results regarding classical versions of UBQC: in that case UBQC
will be required as picture in Figure 1.1.
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Notations and Acronyms

Notations. We summarize in this table the notations used across the thesis.

R, R>0, R≥0 Set of (respectively) reals, positive reals and non-negative reals.

C, N, Z, Zq Set of (respectively) complex numbers, non-negative integers, integers
and the quotient ring of integers modulo q.

A×B, A⊗B Cartesian and Tensor product (respectively).

{ki}i∈K or {ki} Family indexed by elements i in K.

{Ai | i ∈ X} Set of elements Ai such that i ∈ X.

[n] Set {1, . . . , n}.
Zπ

4 Set of angles {0, π4 , . . . , 7π4}.
Ic Complementary of the set I: Ic = {x | x /∈ I}.

U (X) Uniform distribution over X.

x← χ x is sampled according to the distribution χ.

x $← X x ∈ X is sampled uniformly at random in the set X.

x := v The notation x is defined as v. We also use x := v to say that x
takes the value v.

|a| Size of a: if a is a complex number, it is its norm, if a is a set, it is
the number of elements in the set and if a is a bit string, it is its
length.

Notation Description
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a ∝ b a is proportional to b.

δi,j Kronecker delta: δi,j = 1 if and only if i = j, otherwise δi,j = 0.

u|v Concatenation of the bit strings u and v.

vi, v[i] ith element of the bit string v. v[i] is used to avoid confusions when
the name of a string may already contain a subscript.

v1:n Sub-string of v composed of v1| . . . |vn.

H Finite dimensional Hilbert space.

Hn Hilbert space of dimension n.

L (H) Linear operators from H to H.

L◦(H) Linear operators from H to H with trace 1, corresponding to (nor-
malized) quantum states represented as density matrices.

[ρ] Classical description of the quantum state ρ.

a Complex conjugate of a (a may be a complex number or matrix).

Ai,j Entry at the ith line and jth column of the matrix A.

I, In Identity matrix (of dimension n).

AT Transpose of matrix A.

A† Hermitian adjoint of the matrix A, equal to its conjugate transpose:
A† = AT .

|ψ⟩ , ⟨ψ| , ⟨ψ|ϕ⟩ Braket notation: |ψ⟩ is a vector, ⟨ψ| := |ψ⟩† and ⟨ψ|ϕ⟩ := ⟨ψ| |ϕ⟩.
More details in Section 2.1.

∥x∥2 Euclidean norm of x: ∥x∥2 =
√

xTx

a ∧ b Logical “and” operation between bits a and b.

a⊕ b Logical “XOR” operation (addition modulo 2) between bits a and
b. If a and b are bit strings, it corresponds to the bitwise XOR
operation.

⟨b, x⟩ If (b, x) ∈ {0, 1}n, ⟨b, x⟩ = ⊕ibixi.

Notation Description
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MBQC Measurement Based Quantum Computing (Section 2.3.6).

MPC Multiparty computing (Section 7.2.2).

POVM Positive Operator-Valued Measure (Section 2.1.2).

PPT/QPT Probabilistic Polynomial Time and Quantum Polynomial Time.

RHS/LHS Right-Hand Side and Left-Hand Side of an equation.

RSP Remote State Preparation (Chapter 4).

RSPCC Classical-client Remote State Preparation (Chapter 4).

UBQC Universal Blind Quantum Computing (Section 2.3.7).

UBQCCC Classical-client Universal Blind Quantum Computing (Sec-
tion 2.3.7).

VBQC Verifiable Blind Quantum Computing [FK17].

ZK/NIZK/NIZKoQS Zero-Knowledge, Non-Interactive Zero-Knowledge and Non-
Interactive Zero-Knowledge on Quantum States (Chapter 7).

Acronyms Description

xvi



List of Figures

Figure Page

1.1 Dependency relation between the different chapters. . . . . . . . . . . . . . . 11

2.1 Bloch sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Intuitive construction of the Bloch sphere. . . . . . . . . . . . . . . . . . . . 18
2.3 Some unitaries pictured on the Bloch sphere. . . . . . . . . . . . . . . . . . . 20
2.4 A quantum circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Example of ZX-diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Composing multiple gates in an MBQC computation. . . . . . . . . . . . . . 46

3.1 Interactive quantum party and quantum combs. . . . . . . . . . . . . . . . . 53

4.1 Circuit performed by the server. . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Gadget circuit needed by Zπ

4 -QFactory. . . . . . . . . . . . . . . . . . . . . . 75
4.3 Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Probability tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 XOR gadget circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.6 Circuit to implement Protocol 7 . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Triptych of St Hippolyte by Dieric Bouts and Hugo van der Goes (revisited) 107
5.2 Graphical representation of fk. . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3 Graphical representation of the parameters. . . . . . . . . . . . . . . . . . . 123

6.1 Idea of the proof of impossibility of composable RSPCC. . . . . . . . . . . . . 137
6.2 Reproducible converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.3 Ideal resource RSPBB,FCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.4 Ideal resource SUBQC1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

xvii



LIST OF FIGURES

6.5 UBQC with one qubit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.6 Definition of A, π′A, π′B and Q. . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.7 Description of ⊢σ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.8 Illustration of the no-signaling argument. . . . . . . . . . . . . . . . . . . . . 166

7.1 Illustration of ZK with a small sudoku. . . . . . . . . . . . . . . . . . . . . . 177
7.2 Function to compute in the AUTH-BLINDdist

can protocol using MPC. . . . . . . 205
7.3 Construction of a distributable δ′-GHZcan capable family. . . . . . . . . . . . 214

xviii



List of Protocols

Protocol Page
1 UBQC protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2 GHZ-QFactory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3 BB84-QFactory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4 Zπ

4 -QFactory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5 UBQCCC: Classical Blind Quantum Computing . . . . . . . . . . . . . . . 82
6 non-negl-BB84-QFactory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7 10 states-QFactory and its particular case Zπ

4 -GHZ-QFactory . . . . . . . 98
8 BLIND-ZK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
9 BLIND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
10 BLINDsup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
11 BLINDsup

can . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
12 AUTH-BLINDdist

can . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

xix



List of Games

Game Page
IND-CPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
IND-D0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
IND-GHZ-QFactory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
IND-BB84-QFactory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
IND-Zπ

4 -QFactory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
IND-UBQCcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
IND-PARTIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
IND-BLIND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
IND-BLINDsup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
ImpossibleGame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
IND-BLINDsup

can . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

xx







C
h

a
p

t
e

r 1
Introduction

“We never rob. We just sort of borrow a bit from those who can afford it.”

— Disney, Robin Hood

Is Nature fair: benevolent towards the weak and an advocate of equity?
While it is certainly ambitious to characterize Nature’s philanthropy, we propose in
this thesis to approach this issue indirectly by means of quantum cryptography:

Can weak (classical) clients compete against powerful (quantum) servers?
More specifically, can such weak clients use the computational resources of powerful

servers without revealing them any information?

Classical Cryptography. Cryptology—the science of secret—is a surprising but
powerful tool to distill the essence of our universe. In 1995, Impagliazzo defined five
worlds [Imp95a]: Algorithmica, Heuristica, Pessiland, Minicrypt and Cryptomania, later
extended with Obfustopia. Each of these worlds is characterized by the difficulty of
specific problems.

• In the first three worlds, (classical) cryptography is very limited as basically no prob-
lem is sufficiently “hard”1. In particular, two parties can communicate securely—in
the sense that no eavesdropper can decrypt an exchanged message—only if they
can communicate beforehand via a completely trusted channel a large quantity

1The exact definition of “hard” is not important for now and will be formalized later. But informally,
a problem is hard if no polynomially bounded computer can solve this task efficiently (more precisely in
polynomial time, whatever that means).
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CHAPTER 1. INTRODUCTION

of truly random information (scaling with the size of the message). History has
shown that it is a challenging task to achieve [Cen, SE02].

• In the Minicrypt world, one-way functions exist (i.e. functions which can be
evaluated efficiently but are sufficiently hard to invert): cryptography becomes
interesting. For instance, symmetric cryptography is possible: as before parties
wanting to communicate must agree on a secrete random key over a trusted channel,
but the amount of exchanged information can be much smaller [HIL+88, LR85,
GGM86]. More involved cryptographic applications are also imaginable: among
others, it is possible to prove a statement without revealing anything beyond the
fact that this statement is true (this is known as Zero-Knowledge [GMR85, BM88,
GMW91]) and it is possible to digitally sign a document [NY89].

• In the Cryptomania world, trapdoor one-way functions exist (i.e. one-way functions
which are easy to invert when the trapdoor in known). In this world, even more
enthralling cryptographic tasks are possible as one can securely communicate with-
out agreeing first on a secret key (better known as public-key cryptography [DH76,
RSA78]). It is also possible to do much more advanced tasks, like multiparty
computations: one can compute any joint function between multiple parties such
that the input of each party is never revealed to others [GMW87].

• In the Obfustopia world, programs can also be obfuscated, meaning that it is
possible to modify the code of a program in such a way that the code does not
reveal any valuable information about the program besides what would be learnable
by evaluating the program.

One of the most fundamental question in computer science is certainly to prove in which
world we are actually living. In particular, answering this question would allow us to
solve the Holy Grail of computer scientists, which is to determine if P = NP2.

As far as we know, it seems that we live in Cryptomania: while we do not know
how to obfuscate a program, we know constructions to obtain trapdoor functions—for
instance based on the hardness of the Learning With Error problem [Reg05]—such that
no known algorithm can invert these functions efficiently without the trapdoor. As a
consequence, we can use public-key cryptography: we even use it every day. Without
public-key cryptography, it would be impossible to securely connect to a bank website, to
buy something on the internet or to send an encrypted message to a friend; only people
having enough power to distribute secret keys—say, by physically sending an agent with

2P is the class of problems that are classically efficiently solvable and NP is the class of problems for
which it is easy to verify whether a solution is correct. If P = NP, it means that we live in Algorithmica.
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a suitcase full of random keys—would be able to securely communicate. So far, Nature
seems to care about equity.

Quantum Computing. However, there exists a different approach to characterize the
power of an individual beyond its ability to share keys: computational power. Nowadays,
everyone has roughly the same computational power (most have access to a “classical”
computer), notably though, a fundamentally new kind of device is slowly emerging:
quantum computers. This idea started to appear around 1980 [Fey82, Ben80, Man80],
pushed by the extraordinary discovery of quantum mechanics at the beginning of the
20th century [Pla01, Ein05, MR82]. Quantum mechanics describes the stunning physical
properties of infinitesimally small particles. At that scale, physics behaves strangely:
observing a quantum state disturbs it, making it impossible to copy quantum states and
it is possible to manipulate an exponential amount of data using only a few operations.

By exploiting the unusual properties of quantum mechanics, quantum computers
could outperform their classical counterpart. One of the most famous application of
quantum computers is the ability to efficiently factorize very large numbers, otherwise
known as Shor’s algorithm [Sho94]. Classically, there are no known efficient algorithms
which can solve this problem: the hardness of the factorization is a necessity for the
security of the RSA public-key encryption scheme [RSA78], which is one of the pillars of
contemporary cryptography. Thus, quantum computers are a threat to the security of
Internet. Quantum algorithms can also be used to quadratically speed-up search using
the well-known Grover’s algorithm [Gro96]. Furthermore, new thrilling algorithms are
developed on a daily basis [Mon16]. As a consequence, people having access to a quantum
computer could have a significant advantage over those having only access to a classical
computer.

Delegated Computing. However, building a full-fledged quantum computer is an
extremely challenging task (which is yet to be achieved). Nonetheless, much progress has
been done since the first experiments [MMK+95, JM98]. The first embryos of quantum
computers are now starting to emerge, claiming to solve specific problems that are
unsolvable on classical computers [AAB+19, ZWD+20].

The first full-fledged quantum computers are likely to be extremely expensive and
will certainly be made available to the public over the Internet: multiple quantum
companies already share their device “in the cloud”, like [IBM, Ion, Rig, Hon, Xan, Goo].
Similarly, classical cloud services such as Amazon AWS, Dropbox, or Google Cloud are
tremendously popular: countless users are interested in using remote servers to store
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CHAPTER 1. INTRODUCTION

data, or to delegate massive computations on powerful servers. Chances are high that
History will repeat for quantum devices.

Just as with classical delegated computing, it is of utmost importance to provide to
the users guarantees on the privacy of their data. A company owning a secret high-value
quantum algorithm will undoubtedly try to protect it against a dubious cloud provider,
similarly, a medical lab surely needs to preserve the secrecy of the database of its patients
on account of medical confidentiality.

A protocol known as Universal Blind Quantum Computing (UBQC) [BFK09, DFP+14]
already allows a user to delegate a computation on a remote quantum server by making
sure that the server is blind, meaning that they cannot learn the input, the output and
the algorithm used by the client. Other protocols have also been developed, trying to
reduce the interactivity, the communication, the quantum capabilities of the client or to
provide verification [FK17, ABE08, BJ15, DSS16, FBS+14, Bro15, Lia15] (see also the
following reviews [Fit17, GKK19]).

Unfortunately, in all these protocols the client needs to have some small quantum
capabilities and to share a quantum channel (i.e. a channel in which it is possible to
transmit quantum states) with the server. This is a strong requirement, not only because
building a quantum internet is a very daunting task3, but also because some technologies
used to build quantum computers are not easily integrated with a photonic quantum
network. It is therefore crucial to find tools to get rid of quantum channels, which
naturally raises the following questions:

Can a purely classical client perform blind quantum computations on a remote quantum
server?

Is it possible to fake quantum channels using purely classical communication?
And more generally, what are the achievable and unachievable protocols between a

classical client and a quantum server?

In her breakthrough work [Mah18a], Mahadev demonstrated that blind quantum
computing can be accomplished with a purely classical client. This paper was the starting
point of numerous works, leading to (sometimes surprisingly related) applications like
tests of quantumness [BCM+18, MV21, HG21, BKV+20], device-independent quantum
key distribution [MDC+21], verifiable computation [Mah18b] or Remote State Prepara-
tion [GV19] (we will see that our independent work lies in this last category). [Bra18]

3Typically, quantum states are composed of very few photons that can easily be lost due to
imperfections on the transmission line. Moreover, quantum repeaters are hard to produce due to the
fact that most photonic gates are intrinsically non-deterministic: as a result quantum communications
over long distances are challenging.

4



also reduced the security assumptions required in [Mah18a] in order to rely on the more
standard hardness assumption of LWE with polynomial noise ratio. Note that another
work [MDM+17] tried to get rid of quantum communication before [Mah18a], however,
due to the design of this protocol, the server does learn some information about the
computation and the method for translating arbitrary circuits into this framework is
not clear. Another work [Zha21] also provides a protocol which is useful to obtain blind
quantum computing. This protocol is based on the Random Oracle Model (ROM) and the
client do need to have some quantum capabilities. However, the quantum communication
is “succinct” in the sense that the number of sent qubits does not depend on the length
of the computation.

Contributions

Chapter 4: RSP and Classical-Client Blind Quantum Computing. In Chapters 4
and 54, we present a complementary and independent5 approach to obtain classical-
client blind quantum computing [CCK+18, CCK+19, CGK21]. Compared to Mahadev’s
monolithic protocol, we build a more modular primitive called QFactory: QFactory is
the first classical-client Remote State Preparation (RSP) protocol, meaning that it is able
to fake a quantum channel using only classical communication. More precisely, at the
end of an honest run of QFactory, the server ends up with an unknown quantum state
that can only be described by the classical client. All of this happens while the client
and the server communicate purely classically.

It is then possible to use this protocol as a sub-routine inside other protocols to
replace the quantum interaction. Notably, we can combine QFactory with the UBQC
protocol to obtain a protocol achieving classical-client blind quantum computing. In
Section 4.8, we provide a detailed comparison of our approach with related works.

This modular approach is particularly interesting: classical-client RSP protocols
could potentially be used to replace quantum interactions in a large number of protocols
(notably when the sender of the quantum state always knows its classical description).
Of course, a different and potentially non-trivial security proof must be written for each
application, and our QFactory protocol surely needs to be adapted depending on the
situation. In particular, it is not yet clear if QFactory can be used and/or adapted to fit

4Chapter 4 defines our protocols while Chapter 5 describes our cryptographic constructions.
5We started to develop our protocol during my Master 1 internship [Col17], when Mahadev’s result

was not yet online. As described in Chapter 4, back that time we had a first working protocol but no
proof of security nor any explicit construction for the cryptographic family required in our protocol.

5



CHAPTER 1. INTRODUCTION

the requirements of a verifiable and blind quantum computation. In fact, the question of
the feasibility of a superpolynomially secure classical-client verifiable and blind quantum
computing is still open since [GV19] is polynomially secure.

Nevertheless, the list of potential application is huge, including:
• blind and/or verifiable quantum computing as already mentioned,
• but also quantum secure multiparty (QSMPC) computing [KP17, KMW17, KW17,

KKM+21] (note that the protocols [DNS12, CGS02, DGJ+20, LRW20, ACC+21]
also achieve QSMPC, but since the clients can forward states for which they do
not always know the classical description, in these protocols there is no clear way
to replace quantum communication with a classical-client RSP protocol),

• position verification [KMS11, BFS+13, CGM+09, Unr14, LLQ21] (see also the
review in [Chr21]),

• or quantum homomorphic encryption6 [BJ15, DSS16].
Using RSP, all these protocols (and certainly more) could get a chance to be implementable
using purely classical clients.

Chapter 5: Cryptographic construction. Our QFactory protocol requires the
existence of a cryptographic primitive having some special properties. In a nutshell,
our family must notably be 2-to-1 and efficiently invertible with a trapdoor (a few
more properties are also required). In order to realize this construction, we need to
rely on the hardness of the famous Learning With Errors (LWE) problem [Reg05]. For
now, no known algorithm, quantum or classical, can efficiently solve it [Pei16]. As
a result, LWE now stands as the major post-quantum candidate to replace RSA and
elliptic curves: these two primitives are the keystones of modern cryptography, but are
unfortunately vulnerable to quantum adversaries. The LWE problem can be used to
build many cryptographic primitives, for instance to obtain public-key encryption [Reg05,
GPV08, Pei09], digital signatures [GPV08, CHK+10, LM08], (hierarchical) identity-based
encryption [GPV08, CHK+10] or (fully) homomorphic encryption [BV14] (first achieved
with different assumptions in the breakthrough work of [Gen09]).

We can characterize more precisely the security of an LWE instance using a parameter
known as the modulus to noise ratio, or simply noise ratio. If this noise ratio is polynomial,
then the LWE problem is considered as secure. If this noise ratio is exponential, then the
LWE problem is easy (and therefore not usable in cryptographic applications). However,
if the noise ratio is superpolynomial, but not exponential, then we also do not know

6Since RSP protocols typically require at least one round of communication, the RSP part may be
considered as a setup phase to preserve non-interactivity during the protocol.

6



any algorithm to solve the LWE problem in polynomial time [Sch87]. In spite of this,
using LWE with polynomial noise ratio is considered as more standard than using LWE
with superpolynomial noise ratio, but the superpolynomial assumption is sometimes
required [BGG+14].

In Chapter 5, we describe a construction to obtain a (nearly) 2-to-1 and trapdoor family
of functions, fulfilling all the requirements needed in our construction. Unfortunately, we
can only obtain a family approximately 2-to-1: the quality of the approximation depends
on the choice of the hardness assumption. If we allow ourselves to use LWE with a
superpolynomial noise ratio, we can obtain a function which is 2-to-1 for an overwhelming
fraction of inputs. However, when considering LWE with a polynomial noise ratio, we
obtain a function which is 2-to-1 for a fraction of inputs converging polynomially fast to
1. As a result, we propose in Chapter 4 two variants of the QFactory protocol depending
on the chosen hardness assumption7.

Chapter 6: Impossibility results. As explained previously, if QFactory is used
internally in an existing protocol to replace a quantum channel with a classical channel,
the security proof of the new composite protocol must be reassessed. This can be easily
explained as QFactory, along with most of the other protocols cited above—except
for [GV19], but it has other problems like polynomial security as discussed in Re-
mark 6.3.11—are proven secure in a so-called “game-based” security model which does
not guarantee security under composition. But other security frameworks allow general
composability [Can01, MR11, Unr10, BPW03], leading to the following natural question:

Is it possible to prove the security of a classical-client RSP protocol in a general
composable framework? If not, can we prove the composable security of a classical-client

blind quantum computing protocol?

Note that when considering only statistical security (not even mentioning composable
security), we already know that it is highly improbable that a secure classical-client
blind quantum computing protocol exists. In [MK19], the authors showed a negative
result by presenting a scheme-dependent impossibility proof. This was further improved
in [ACG+19] which showed that such a statistically secure classical blind quantum
computing protocol would have implications in computational complexity theory.

But none of the aforementioned works consider impossibility for computational security,
and for classical-client RSP protocols. Of course, given the previously mentioned positive

7Note however that when we rely on LWE with a polynomial noise ratio, we need to use an additional
conjecture.
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CHAPTER 1. INTRODUCTION

results on classical-client blind quantum computing and RSP, such a generic impossibility
result is unlikely to exist (unless the hardness assumption on LWE collapses).

However, we show in Chapter 6—based on our result in [BCC+20]—that there exist
no classical-client RSP protocols that is secure in a general composable framework (we
focus on the Constructive Cryptography security model [MR11]). Our result is very
generic as our definition of RSP resources is very broad and even includes potentially
noisy RSP resources.

Secondly, we also show that the UBQC protocol cannot produce a secure composable
protocol if the quantum interaction is replaced with a (correct) RSP protocol.

Chapter 7, Section 7.3: Zero-Knowledge on Quantum States. We also consider
an, a priori, completely different problem: Non-Interactive and Non-destructive Zero-
Knowledge proofs on Quantum States (NIZKoQS). Suppose that Alice would like to send
a quantum state to Bob (non-interactively, meaning that a single message is sent from
Alice to Bob):

Can Alice prove (non-interactively) to Bob that the sent quantum state belongs to a
given set, without destroying or revealing any additional information about that state?

For instance, Alice may want to prove that in the n-qubits state that has been sent,
two qubits are entangled (forming a Bell state) and that the remaining qubits are random
|0⟩ or |1⟩ states. Moreover, Alice may want to partially reveal, completely reveal or
completely hide the position of this Bell pair. Or even stronger, Alice may want to prove
that the first qubit is part of the Bell pair only if she knows the private key associated to
some Bitcoin public keys; one can imagine a lot of such properties.

This task is the quantum analogue of what is known classically as Zero-Knowledge (ZK).
Classical Zero-Knowledge proofs and Interactive Proofs systems have been introduced
thirty years ago [GMR85, BM88], and allow a prover to prove a statement to a verifier
without revealing anything beyond the fact that this statement is true. Zero-Knowledge
proofs have been proposed for any language in NP [GMW91]. While Non-Interactive Zero-
Knowledge (NIZK) proofs are known to be impossible in the plain model [FS87], NIZK can
be obtained in the Common Reference String model [BFM88] or in the Random Oracle
model by using the famous Fiat-Shamir transformation [GO94]. The security of classical
Zero-Knowledge proofs were also extended to be secure against malicious quantum
provers [Wat09, Unr12, BS20], and much work has been done to extend these protocols
to remove interactivity [DFM+19, LZ19] or deal with multiple (potentially quantum)
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provers, targeting larger classes like IP,QMA, MIP, MIP∗ or considering “dequantized”
verifiers ([IY88, BJS+16, GSY19, CVZ20, ACG+20, BG20, BCK+20, VZ20, Shm20,
MY21], see also the review [VW16]).

However, these works focus on classical languages (even in QMA the language is still
classical, despite the fact that the witness can be quantum). A method for deriving
similar properties on a quantum language is to use a generic quantum secure multiparty
computing protocol (QSMPC) [DNS12, DGJ+20, KKM+21]. However, these protocols
are interactive, and to the best of our knowledge, there are no results which provide
one-shot Zero-Knowledge proofs on quantum states. Note that because a quantum
state cannot even be copied, the above protocols cannot be turned into non-interactive
protocols using the Fiat-Shamir transformation [FS87].

At a first glance, non-destructive and non-interactive proofs on quantum states seems
impossible: when receiving a normal quantum state, quantum mechanics tells us that
the only way to extract information from this state is to alter it irrevocably. Moreover,
quantum mechanics asserts that even an unbounded party cannot distinguish some classes
of quantum states: for instance, it is impossible to distinguish a qubit sampled uniformly
at random from the set {|0⟩ , |1⟩} from a qubit sampled uniformly from the set {|+⟩ , |−⟩}.
However, we show in Chapter 7 how these fundamental limitations can be circumvented.
We explain how it is possible to achieve Non-Interactive and Non-Destructive Zero-
Knowledge proofs on Quantum States (NIZKoQS) for non-trivial quantum languages.
Surprisingly, the non-interactive classical-client RSP protocols introduced in the previous
chapters turn out to be essential tools in our methodology.

Chapter 7, Section 7.4: Extension to a Mutiparty Setting. RSP protocols are
typically designed to be used between one sender and one receiver. However, we also
consider extensions in which multiple (potentially untrusted) senders generate a given
state collaboratively on a (potentially untrusted) source. This also allows us to quantify
the leakage of our RSP protocol when partial information is leaked about the secret key.
Combined with NIZKoQS we can show how a source can share a GHZ state by arbitrarily
filtering the participants, in such a way that nobody—not even the source—knows who
shared a part of the GHZ state.

As discussed in Section 7.1.3, this could have use cases in all the protocols in which
the protocol starts by the distribution of a GHZ state (or a Bell pair), including, but
not limited to, Quantum Secret Sharing [HBB99], Quantum Teleportation [BBC+93],
Entanglement Distillation [BBP+96a, BBP+96b, BDS+96], Device-Independent Quantum-
Key-Distribution [MY98], Anonymous Transmission [CW05], Quantum Routing [PWD18,

9
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MMG19]. More precisely, the source could run our protocol to generate the GHZ state to
distribute, and the participants will then be able to use the source as before: that way,
nobody—not even a malicious source—should be able to know who is participating in
the protocol, while the source has guarantees that the participants fulfill some properties.

In particular, our approach would allow a party to do a quantum secret sharing of a
quantum state to unknown filtered parties, and we can also imagine new applications,
including a quantum onion-like routing protocol, in which a quantum message is routed
through an untrusted network while preserving both the source and the destination of
the quantum state as discussed in Section 7.1.3.

Publications. The results presented in this thesis were presented in the following
works:

• [CCK+18] is the first publication regarding classical-client RSP protocols (it was
published much later in [CCK+21] and improves the work started during my
Master 1 thesis [Col17]). We describe there a first version of our QFactory protocol,
but we only prove the security in a weak “honest-but-curious” model.
I presented this work at QCrypt20188.

• [CCK+19], published in ASIACRYPT 20199, improves the QFactory protocol and
provides a full proof of security, against arbitrary malicious adversaries. We also
study how to deal with more standard security assumptions, namely LWE with
polynomial noise ratio.

• [BCC+20] proves the impossibility results regarding composable classical-client
RSP protocols and classical-client UBQC. We also prove that QFactory can securely
be used inside UBQC when targeting non-composable security10.
I presented this work at ASIACRYPT 202011.

• [CGK21] presents our work on Non-Interactive and Non-Destructive Zero-Knowledge
on Quantum States and the extension to multiparty authorized GHZ preparation.
It also extends QFactory to produce multi-qubit states and does a proper analysis
of the LWE parameters when relying on LWE with superpolynomial noise ratio. It
is currently under submission.

8https://youtu.be/u8gUPcLyuPo
9ASIACRYPT is a conference with proceedings.

10In this thesis this last result is actually improved, as we extend it to any “basis-blind” computationally
secure RSP protocol.

11https://youtu.be/ROqk9tZ_VxA
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Organization of the Thesis. The thesis is split into two introductory chapters and
four research chapters. You can find in Figure 1.1 the dependency relation between the
different chapters of this thesis. The full table of contents is available on page xi.

Chapter 2
quantum basics

ubqc

Chapter 3
crypto basics

Chapter 6
constr. crypto.

no-go rsp
no-go ubqccc

Chapter 4
qfactory

ubqccc

Chapter 5
lwe

fk construction

c Introduces existing
concept C

c Introduces new concept C
A B A is a prerequisite of B

Related but independent

Chapter 7
nizk mpc

nizkoqs
multiparty ghz

Figure 1.1: Dependency relation between the different chapters.
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Introduction to Quantum

Computing

“The totality is not, as it were, a mere heap, but the whole is something
besides the parts.”

— Aristotle, Metaphysica

Since a quantum system is first and foremost a physical system, it must obey
the “laws of Nature”. However, these laws can behave very differently depending
on the scale at which they are considered. The aim of quantum mechanics is to

provide a fundamental theory characterizing them, targeting especially the world of the
infinitely small (typically at the scale of a photon or an atom). Quantum mechanics
embeds many concepts, ranging from photons wave functions to atomic orbitals, and
from electrons spins to the Schrödinger equation. However, in quantum computing, we
prefer to abstract the underlying physical system used to perform the computations,
similar to the way classical computer science uses bits instead of electric currents.

In this chapter, we will cover the basics of quantum computing. We will start by
introducing its mathematical formalism, before describing the ZX-Calculus, a very handy
tool to graphically reason on quantum circuits. Note that it is not mandatory to know
the ZX-Calculus to understand this thesis—a careful reader could check any computation
done in the ZX-Calculus using standard linear algebra—but computations can be highly
simplified this way, are more elegant, and also provide a better intuition of what’s going
on, beyond the famous “Shut up and calculate” motto [Mer89]. We will finish this chapter
by showing some quantum protocols and properties that will prove useful later.

13



CHAPTER 2. INTRODUCTION TO QUANTUM COMPUTING

Note that an interested reader can find much more details in the famous book of
Nielsen and Chuang [NC10]. For the ZX-calculus, initially introduced by Bob Coecke
and Ross Duncan in [CD08], we recommend the review [vdWet20] which provides a nice
overview of the existing tools offered by the ZX-calculus. The “Dodo book” [CK17] also
offers a very interesting and general approach to diagrammatic reasoning.

2.1 Quantum Computing: Mathematical Formalism

2.1.1 Quantum States and Dirac Notation

Hilbert Space. Hilbert spaces play a central role in quantum computing since they
represent the world in which quantum states are living. A finite dimensional Hilbert space
H—we only consider finite dimensions in this thesis, and more generally in quantum
computing—is a finite dimensional complex vector space equipped with an Hermitian
inner product ⟨ · | · ⟩ : H ×H→ C. More precisely, it fulfills the following conditions:

• Complex vector space: H is a set equipped with two operations +: H×H→ H
and · : C×H→ H (the symbol · is often omitted) such that the following axioms
hold for all vectors (u,v,w) ∈ H3 and scalars (λ, µ) ∈ C2:

– Associativity of addition: u + (v + w) = (u + v) + w
– Commutativity of addition: u + v = v + u
– Identity element of addition: there exists an element 0 ∈ H such that v+0 = v
– Inverse element of addition: for any v ∈ H there exists an element −v ∈ H

such that v− v := v + (−v) = 0
– Compatibility of multiplication: λ(µv) = (λµ)v
– Identity of multiplication: 1 · v = v
– Distributivity: λ(u + v) = λu + λv and (λ+ µ)v = λv + µv

A basis for H is a set B ⊆ H such that any element in H can be written as a linear
combination of vectors in B. The dimension n of H is the smallest possible number
of elements in any basis of H. We assume that H is finite dimensional, i.e. that
n ∈ N.

• Hermitian inner product: H is equipped with an operation ⟨ · | · ⟩ : H ×H→ C
which is:

– Conjugate symmetric: for all (v,w) ∈ H2, we have ⟨v|w⟩ = ⟨w|v⟩
– Linear in the second argument: for all (v,w1,w2) ∈ H2, (λ, µ) ∈ C2, we have
⟨v|λw1 + µw2⟩ = λ⟨v|w1⟩+ µ⟨v|w2⟩

14



2.1. QUANTUM COMPUTING: MATHEMATICAL FORMALISM

– Positive definite: for all v ∈ H2, we have ⟨v|v⟩ ≥ 0, with equality if and only
if v = 0

The inner product also defines a norm ∥·∥2 : H→ R≥0 (or simply ∥·∥) on H: for
any v ∈ H, ∥v∥ :=

√
⟨v|v⟩.

In finite dimensions all Hilbert spaces Hn of dimension n ∈ N are isomorphic to Cn

equipped with its canonical inner space:

∀(v, w) ∈ Cn, ⟨v|w⟩ :=
∑
i

viwi (2.1)

For this reason, Hn can always be assumed to be this later Hilbert space. Note that in
the following we will slighly abuse notations and we may use vectors to denote elements
of a Hilbert space H and matrices to denote linear operations on Hilbert spaces. This
must be understood as if we fixed an orthonormal basis1 for this Hilbert space (such as
the canonical basis when considering Cn), and expressed each vector/linear operation in
this basis.

Pure Quantum State. Quantum states exist in two flavours: pure and mixed. Mixed
states are a generalisation of pure quantum states, in which some parts of the system
can be discarded. However, pure states are still extremely useful as they characterize
isolated systems. Pure states are formally defined as follows:

A pure quantum state is fully described as a unit vector in a Hilbert space H.

Moreover, two quantum states v ∈ H and w ∈ H are considered equal2 if and only if
they differ only by a global phase, i.e. if there exists θ ∈ [0, 2π) such that v = eiθw. We
say that the global phase is not observable.

The Hilbert space H2 plays an essential role since vectors in H2 are qubits, i.e.
quantum bits. Two states are particularly important:

|0⟩ :=
1

0

 |1⟩ :=
0

1

 (2.2)

The state |0⟩ (pronounced “ket 0”, for a reason that will become clear later) informally
corresponds to a classical bit 0, while |1⟩ corresponds to the classical bit 1. Note that

1An orthonormal basis is a basis {ei}i in which ∀i, j, ⟨ei|ej⟩ = δi,j , where δi,j is the Kronecker delta.
2One could have been slightly more formal by defining quantum states using a quotient space, but it

is more cumbersome to use and describe.
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CHAPTER 2. INTRODUCTION TO QUANTUM COMPUTING

{|0⟩ , |1⟩} is an orthonormal basis of H2. In particular, any state |ψ⟩ ∈ H2 can be written
as

|ψ⟩ = a |0⟩+ b |1⟩ (2.3)

for some (a, b) ∈ C2, with the normalization condition |a|2 + |b|2 = 1. When a and b are
not null, we say that |ψ⟩ is in superposition since it is a sum of multiple basis vectors.

Note that in practice, a qubit should be implemented using a physical system, like a
cold atom or a polarized photon. For instance, in that latter case, the modulus squared
of the first coordinate of a qubit may represent its amount of horizontal polarization
while those of the second coordinate may represent its amount of vertical polarization.
However, these technical “details” are not important in quantum computing, only the
vector representing that state will matter.

Adjoint and Dirac Notation. The symbol | · ⟩ comes from the Dirac notation, and
will be extremely useful to represent quantum states in a concise way. In this notation,
the symbol | · ⟩ (pronounced “ket”) is used to denote the fact that the object · is a vector.
For instance, we usually denote by |ψ⟩ an arbitrary quantum state labelled ψ (Greek
letters will be used to denote arbitrary vectors). We can of course do operations on kets
like on any other matrix, for instance to define the following states (θ being a real angle):

|+⟩ := 1√
2

(|0⟩+ |1⟩) =
1/
√

2
1/
√

2

 |−⟩ := 1√
2

(|0⟩ − |1⟩) =
 1/

√
2

−1/
√

2

 (2.4)

|+θ⟩ := 1√
2

(|0⟩+ eiθ |1⟩) =
 1/

√
2

eiθ/
√

2

 (2.5)

Note that {|+⟩ , |−⟩} forms an orthonormal basis, like {|0⟩ , |1⟩}.
The Hermitian adjoint A† : HB → HA (read “dagger”) of a linear operator A : HA →

HB will prove to be particularly useful when defining the different operations that one
can perform on a quantum state. The operator A† is the unique linear operator such
that for all v1 ∈ HA and v2 ∈ HB, ⟨v2|Av1⟩ = ⟨A†v2|v1⟩. This translates quite nicely
in term of matrices: if Â is the matrix representation3 of the linear operator A in an
orthonormal basis, then the matrix Â†—corresponding to the matrix representation of
A† in this basis—is the complex conjugate transpose of Â, i.e. Â† = Â

T

. If we identify
the matrix and its operator, this gives:

A† = AT (2.6)
3We will later identify A and its matrix representation Â for simplicity.
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2.1. QUANTUM COMPUTING: MATHEMATICAL FORMALISM

The Dirac notation also defines a ⟨ · | operation (pronounced “bra”) to denote the
Hermitian adjoint of a vector:

⟨ψ| := |ψ⟩† = |ψ⟩T =
(
ψ1 . . . ψn

)
(2.7)

This way, the Dirac notation now has a nice property; multiplying a “bra” with a “ket”
gives you a “braket”, i.e. an inner product:

⟨ψ| |ψ⟩ =
(
ψ1 . . . ψn

)
ψ1
...
ψn

 =
∑
i

ψiψi = ⟨ψ|ψ⟩ (2.8)

Moreover, |ψ⟩ ⟨ψ| is the projector on ⟨ψ|. Note also that ⟨v2|Av1⟩ = ⟨v2|A |v1⟩.

Bloch Sphere. We will now see a way to graphically represent a single qubit. This
is made possible thanks to the fact that the global phase of a quantum state is not
observable, which means that it is impossible to distinguish two states |ϕ⟩ and |ψ⟩ when
there exists an angle θ ∈ R such that |ϕ⟩ = eiα |ψ⟩. For that reason, we can always factor
out and remove the global phase of an arbitrary qubit.

|ψ⟩ = a |0⟩+ b |1⟩ (2.9)
= r1e

iα |0⟩+ r2e
iβ |1⟩ (2.10)

= eiα(r1 |0⟩+ r2e
i(β−α) |1⟩) (2.11)

≃ r1 |0⟩+ r2e
i(β−α) |1⟩ (2.12)

where a = r1e
iα, b = r2e

iβ, (r1, r2) ∈ R2
≥0, (α, β) ∈ [0, 2π) and |a|2 + |b|2 = r2

1 + r2
2 = 1.

Therefore, there exists θ′ ∈ [0, π/2) such that r1 = cos(θ′) and r2 = sin(θ′). By defining
θ := 2θ′ ∈ [0, π) and ϕ := β − α ∈ [0, 2π), we have r1 = cos

(
θ
2

)
and r2 = sin

(
θ
2

)
and

therefore:

|ψ⟩ ≃ cos
(
θ

2

)
|0⟩+ sin

(
θ

2

)
eiϕ |1⟩ (2.13)

While |ψ⟩ was before characterized by two complex numbers (dimension 4), it is now
possible to describe |ψ⟩ using two real angles (dimension 2). These angles can be used to
uniquely represent any qubit as a point on a sphere known as the Bloch sphere, pictured
Figure 2.1a.

On the Bloch sphere, orthogonal states are antipodal. While this may seem counter
intuitive, it comes directly from the fact that we combined points equal up to a global
phase as pictured in Figure 2.2.
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z

x
y

|ψ⟩

ϕ

θ

(a) Representation of an arbitrary qubit |ψ⟩
on the Bloch sphere.

|1⟩

|0⟩

|−⟩

|+⟩ |+θ⟩
θ

(b) Representation of the most usual vectors
on the Bloch sphere.

Figure 2.1: Bloch sphere.

|1⟩

|0⟩
|+⟩|−⟩

− |1⟩

− |0⟩
− |+⟩ − |−⟩

=

(a) Usual planar representation of vectors. Orthogonal states are repre-
sented orthogonally (right angle). Notice the redundancy of the vectors
when doing the quotient on the global phase (for instance, |0⟩ = − |0⟩).

|1⟩

|0⟩
|+⟩|−⟩

(b) It is therefore tempting to remove
this redundant part and merge antipodal
points. . .

|1⟩

|0⟩

|+⟩|−⟩

(c) Now, orthogonal states are antipodal,
and we have a unique representation for
each vector.

Figure 2.2: Intuitive construction of the Bloch sphere (we represent only a 2D cut of the
space H2 where all vectors are real).
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2.1.2 Operations on qubits

A quantum state can be modified in multiple ways. The two basic operations that can
be applied on a quantum state are unitaries and measurements.

Unitaries. A unitary U : H→ H is a linear map such that U†U = UU† = I (where I
is the identity matrix). In particular, it is invertible (its inverse is U†) and it preserves
the norm of the input state, which is essential to ensure that the output state is a well
formed quantum state. Some unitaries (sometimes called gates by analogy with circuits)
will be particularly useful later:

I :=
1 0

0 1

 X :=
0 1

1 0

 Z :=
1 0

0 −1

 (2.14)

T(θ) :=
1 0

0 eiπ/4

 Rz(θ) :=
1 0

0 eiθ

 H := 1√
2

1 1
1 −1

 (2.15)

The unitary I is the identity map: it does not change the input state. In particular,
I |0⟩ = |0⟩ and I |1⟩ = |1⟩. On the other hand, X is the equivalent of the classical NOT
operation: it turns |0⟩ into |1⟩ and |1⟩ into |0⟩. Moreover, the states |+⟩ and |−⟩ are
kept unchanged when applying X (up to a global phase). The unitaries Z, T and Rz

(note that Z and T are particular cases of Rz(θ)) add a phase on the |1⟩ component:
Rz(θ)(a |0⟩+ b |1⟩) = a |0⟩+ beiθ |1⟩. In particular, Z behaves similarly to X except that
it swaps |0⟩ and |1⟩, and the fix points are |+⟩ and |−⟩. Finally, the Hadamard gate
H turns the basis {|0⟩ , |1⟩} into {|+⟩ , |−⟩}. In particular, it maps the state |0⟩ to |+⟩,
which is a uniform superposition on all vectors of the {|0⟩ , |1⟩} basis. This property will
also be very useful later when dealing with multiple qubits.

Note that all the unitaries that can be performed on a single qubit are rotations on
the Bloch sphere: the rotations of the above gates are drawn in Figure 2.3. Moreover, the
gates H and Rz can be composed to produce any one-qubit unitary, for instance using
the Euler angle decomposition. It is also possible to efficiently approximate any one-qubit
unitary using only H and T gates, for instance using the Solovay-Kitaev algorithm [Kit97,
DN06].

Tensor product. Classically, having a single bit is usually not very useful, and we often
need to use many bits. Quantumly, we can also gather multiple qubits (or more generally

19



CHAPTER 2. INTRODUCTION TO QUANTUM COMPUTING

|1⟩

|0⟩
z

|−⟩

|+⟩
x

y

|+θ⟩
θ

Rz(θ)

X

(a) The X and Rz unitaries. Observe that
X is a rotation around the x axis and Rz

is a rotation around the z axis

H

|1⟩

|0⟩
z

|−⟩

|+⟩
x

y

|+θ⟩
θ

(b) The Hadamard unitary is a rotation
around the x+ z axis.

Figure 2.3: Some unitaries pictured on the Bloch sphere.

quantum states) into a single state: the state obtained after combining |ϕ⟩ ∈ HA and
|ψ⟩ ∈ HB will be denoted |ϕ⟩ ⊗ |ψ⟩ ∈ HA ⊗ HB. For instance, |0⟩ ⊗ |1⟩ represents a
system composed of two qubits, the first qubit being |0⟩ and the second being |1⟩.

Formally, (HA ⊗HB,⊗) is defined4 as a tensor product, i.e. a couple in which:
• HA ⊗HB is a vector space over the same field F as HA and HB (we only consider

F = C in the case of quantum mechanics),
• ⊗ : HA ×HB → HA ⊗HB is a bilinear map (we use the infix notation for ⊗), i.e.

it respects the following properties:
– Homogeneity: For any c ∈ F, |ϕ⟩ ∈ HA, |ψ⟩ ∈ HB:

c(|ϕ⟩ ⊗ |ψ⟩) = (c |ϕ⟩)⊗ |ψ⟩ = |ϕ⟩ ⊗ (c |ψ⟩) (2.16)

– Left additivity: For any (|ϕ1⟩ , |ϕ2⟩) ∈ H2
A, |ψ⟩ ∈ HB:

(|ϕ1⟩+ |ϕ2⟩)⊗ |ψ⟩ = |ϕ1⟩ ⊗ |ψ⟩+ |ϕ2⟩ ⊗ |ϕ2⟩ (2.17)

– Right additivity: For any |ϕ⟩ ∈ HA and (|ψ1⟩ , |ψ2⟩) ∈ H2
B:

|ϕ⟩ ⊗ (|ψ1⟩+ |ψ2⟩) = |ϕ⟩ ⊗ |ψ1⟩+ |ϕ⟩ ⊗ |ψ2⟩ (2.18)

• if {|ei⟩}i is a basis of HA and {|fi⟩} is a basis of HB, then {|ei⟩ ⊗ |fi⟩} is a basis
of HA ⊗HB,

• for any (|ϕ1⟩ , |ϕ2⟩) ∈ H2
A, (|ψ1⟩ , |ψ2⟩) ∈ H2

B:

⟨|ϕ1⟩ ⊗ |ϕ2⟩ | |ψ1⟩ ⊗ |ψ⟩2⟩ := (⟨ϕ1| ⊗ ⟨ϕ2|)(|ψ1⟩ ⊗ |ψ⟩2) = ⟨ϕ1|ψ1⟩⟨ϕ2|ψ2⟩ (2.19)
4The reader should not be confused by the usage of ⊗ inside HA ⊗HB : HA ⊗HB is just the name

of the vector space, and could have been replaced with any symbol, like T .
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For a bit string b = b1| . . . |bn ∈ {0, 1}n, we also use the notation |b⟩ := |b1⟩ |b2⟩ . . . |bn⟩ :=
|b1⟩ ⊗ . . . |bn⟩ (the tensor product can often omitted). We can for instance check that
applying X⊗ I on |00⟩ flips the first bit:

(X⊗ I) |00⟩ = (X⊗ I)(|0⟩ ⊗ |0⟩) (2.20)
= (X |0⟩)⊗ (I |0⟩) (2.21)
= (|1⟩)⊗ (|0⟩) (2.22)
= |10⟩ (2.23)

If Hn and Hm are respectively n-dimensional and m-dimensional Hilbert spaces, then
the dimension of Hn⊗Hm is n×m. In particular, the dimension of a system composed of
n qubits is 2n, which is exponential in the number of qubits. We will denote by H⊗n the
tensor product H ⊗ · · · ⊗H︸ ︷︷ ︸

n times

: a system composed of n qubits will therefore be denoted

H⊗n2 . It is also common to group qubits together into registers: for instance if the n
first qubits of the space Hn+m

2 are used to encode an input, and the m remaining qubits
are used to encode some outputs, we will refer to the first group of n qubits as the first
register, and to the second group of m qubits as the second register. This notion trivially
extends to more than 2 registers.

One can also “lift” operations acting separately on each system to operations acting on
the global system. Given {|ei⟩}i a basis of HA1 , {|fi⟩} a basis of HB1 and two linear map
UA : HA1 → HA2 and UB : HB1 → HB2 , we define UA⊗UB : HA1 ⊗HB1 → HA2 ⊗HB2

as the only linear map such that for all i, j:

(UA ⊗UB)(|ei⟩ ⊗ |fj⟩) := (UA |ei⟩)⊗ (UB |fj⟩) (2.24)

It is also possible to use the Kronecker product to compute a tensor product in term
of matrices: Given two matrices or vectors A ∈ Cm×n and B ∈ Cp×q, we define the
Kronecker product between A and B as:

A⊗B :=


a11B · · · a1nB

... . . . ...
am1B · · · amnB

 ∈ Cmp×nq (2.25)

For instance:

|0⟩ ⊗ |0⟩ =


1
0
0
0

 |0⟩ ⊗ |1⟩ =


0
1
0
0

 |1⟩ ⊗ |0⟩ =


0
0
1
0

 |1⟩ ⊗ |1⟩ =


0
0
0
1

 (2.26)
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and

X⊗ I =
0 1

1 0

⊗
1 0

0 1

 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (2.27)

The above example Eq. (2.26) shows the nice property of the Kronecker tensor product:
let b = bn−1| . . . |b0 ∈ {0, 1}n be a bit string, let i = ∑

j bj2j ∈ N be the number whose
binary representation is b, then |b⟩ = |bn−1⟩ ⊗ · · · ⊗ |b0⟩ is the vector having a 1 at the
i-th entry and 0 elsewhere. Moreover, we can easily check again that (X⊗ I) |00⟩ = |10⟩:

(X⊗ I) |00⟩ (2.27)=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




1
0
0
0

 =


0
0
1
0

 = |10⟩ (2.28)

It is now possible to define unitaries on multiple qubits:

CNOT :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ∧Z :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (2.29)

These two gates are called controlled unitaries, because they apply a given unitary
(X for CNOT and Z for ∧Z) on the second qubit when the first qubit is |1⟩ and the
identity when the first qubit is |0⟩. This way for a ∈ {0, 1}, CNOT |0a⟩ = |0a⟩ and
CNOT |1a⟩ = |1(1− a)⟩. Similarly, ∧Z |11⟩ = − |11⟩ while the states |00⟩, |01⟩ and |10⟩
are fixed points of ∧Z (remark that ∧Z is symmetric).

For any gate G and integer n, we define G⊗n := G⊗ · · · ⊗G as the tensor of n gates
G. We will often use the following properties on the Hadamard gate:

Lemma 2.1.1. Let n ∈ N and x ∈ {0, 1}n. Then, H⊗n |x⟩ = 1√
2n

∑
b∈{0,1}n(−1)⟨b,x⟩ |b⟩,

where we define ⟨b, x⟩ := ⊕ibixi. In particular, if x = 0 . . . 0, it creates 1√
2n

∑
b∈{0,1}n |b⟩,

the uniform superposition on {0, 1}n.

Proof. This well known property can be proved by induction on n. We have

H |x0⟩ = 1√
2
|0⟩+ (−1)x0 |1⟩ = 1√

2
∑

b∈{0,1}
(−1)bx0 |b⟩ (2.30)
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and

H⊗(n+1) |x⟩ = (H⊗n |x1:n⟩)⊗ (H |xn+1⟩) (2.31)

=
 1√

2n
∑

b∈{0,1}n

(−1)⊕ibixi |i⟩
⊗

 1√
2

∑
b

′∈{0,1}
(−1)b

′
xn+1 |b′⟩

 (2.32)

= 1√
2n+1

∑
b∈{0,1}n+1

(−1)⊕ibixi |b⟩

For a bit string a ∈ {0, 1}n and a one-qubit gate G, we use the notation Ga =
Ga1 ⊗ · · · ⊗Gan to denote the circuit that applies G on qubit i iff a[i] = 1.

It is possible to use the Dirac notation to represent matrices, by remarking that any
matrix A ∈ Cm×n can be decomposed as:

A =
∑
i,j

Aij |i⟩ ⟨j| (2.33)

For instance, X = |1⟩ ⟨0|+ |0⟩ ⟨1| and this way we have:

X |0⟩ = (|1⟩ ⟨0|+ |0⟩ ⟨1|) |0⟩ (2.34)
= |1⟩ ⟨0|0⟩︸ ︷︷ ︸

=1

+ |0⟩ ⟨1|0⟩︸ ︷︷ ︸
=0

(2.35)

= |1⟩ (2.36)

Measurements. While a classical bit can only have two values (0 or 1), a qubit can
have infinitely many values (all the states of the form a |0⟩+ b |1⟩ with norm 1). However,
it does not mean that it is possible to use a qubit to store an infinite amount of data:
very little information is actually accessible to an outside observer. For instance, as we
will see later, it is impossible to extract more than one bit of information given access to
an unknown qubit. Any such extraction process is called a measurement: measurements
are therefore bridges between the classical world and the quantum world. Measurements
also inherently alter quantum states: some measurements even completely destroy the
state. We will first see the most general definition of a measurement, and we will then
study some useful special cases.

A quantum measurement is described by an indexed family {Mm}m∈M such that∑
m

M†
mMm = I (2.37)

When measuring a state |ψ⟩, we obtain a classical outcome m ∈M: the probability
of getting outcome m is given by ⟨ψ|M†

mMm |ψ⟩ (Eq. (2.37) is necessary to ensure the

23



CHAPTER 2. INTRODUCTION TO QUANTUM COMPUTING

probabilities sum up to one). The state of the system after the measurement will be the
state Mm |ψ⟩, up to a normalization factor:

Mm |ψ⟩√
⟨ψ|M†

mMm |ψ⟩
(2.38)

Remark 2.1.2. Note that this definition is very general: any process that outputs a
classical information can be described as a single measurement. Notably, applying a
unitary U on a state before performing a measurement {Mm}m∈M is the same thing as
performing directly the measurement {MmU}m∈M.

Remark 2.1.3. It is also important to see that the outcome of the measurement cannot
be forced. Forcing the outcome of a measurement is called postselection and is very
unlikely to be a physical process. While the standard complexity class associated with
quantum computing is called BQP (Bounded-Error Quantum Polynomial-Time), the
complexity class allowing postselection in quantum computing is called PostBQP and
was proven [Aar05] to be equal to PP (Probabilistic Polynomial-Time), a class believed
to be much wider than BQP.

Some special kinds of measurements will prove to be particularly useful. For instance,
we define a measurement in the computational basis of a system H⊗nn composed of n
qubits as the measurement obtained with Mm := |m⟩ ⟨m|, for m ∈ {0, . . . , 2n − 1}. Note
that M†

mMm = |m⟩ ⟨m|: therefore, when measuring a qubit |ψ⟩ = a |0⟩ + b |0⟩ in the
computational basis, we get outcome 0 with probability ⟨ψ|M†

0M0 |ψ⟩ = ⟨ψ|0⟩⟨0|ψ⟩ =
|⟨0|ψ⟩|2 = |a|2, and similarly we get outcome 1 with probability |b|2. Note that this
definition extends similarly for any orthonormal basis {|m⟩}m∈M: in particular we talk
about measurement in the Hadamard basis when the basis is made of combination of
|+⟩ and |−⟩: this name comes from the fact that we can perform such a measurement by
first applying Hadamard gates on each qubit and measuring in the computational basis.

It is also possible to define a partial measurement on a register, which measures only
the qubits of a given register: If {Mm}m∈M is a measurement on HB, we can extend it
to a measurement on the Hilbert space composed of multiple registers HA1 ⊗ . . .HAn

⊗
HB ⊗ HC1 ⊗ · · · ⊗ HCl

by defining for all m ∈ M, M′
m := I ⊗ . . . I ⊗Mm ⊗ I ⊗ I

(where the dimensions and number of the identity matrices match the number and
dimensions of the corresponding registers). For instance, if we consider a state of the
form |ψ⟩ = a |0010⟩ + b |0011⟩ + c |0100⟩, if we measure the first two qubits in the
computational basis we can get two possible outcomes: 00 and 01. We measure 00 with
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probability:

⟨ψ|M′†
00M′

00 |ψ⟩ = ⟨ψ| (|00⟩ ⟨00| ⊗ I)†(|00⟩ ⟨00| ⊗ I) |ψ⟩ (2.39)
= ⟨ψ| ((|00⟩ ⟨00|)† ⊗ I†)(|00⟩ ⟨00| ⊗ I) |ψ⟩ (2.40)
= (a ⟨0011|+ b ⟨0010|)(a |0011⟩+ b |0010⟩) (2.41)
= |a|2 + |b|2 (2.42)

In that case, the state after the measurement will be a|0011⟩+b|0010⟩√
|a|2+|b|2

(note that we basically
remove all terms not starting with 00 and renormalize the obtained state). Similarly, we
measure 01 with probability |c|2 and the post-measured state is c

|c| |0100⟩ which is equal
to |0100⟩ when removing the global phase.

Another kind of measurements is common: Positive Operator-Valued Measure (POVM).
They are useful when knowing the post-measured state is not required, and they corre-
spond to the most general operation we can perform to extract a classical information
from a quantum state. A POVM is described by an indexed sequence {Em}m∈M of opera-
tors such that each operator is positive (i.e. such that for all v and m, ⟨v|Em |v⟩ ≥ 0) and
such that ∑m Em = I. One can turn a general measurement {Mm}m∈M into a POVM by
simply defining Em := M†

mMm: this gives us that the probability of outputting outcome
m when measuring |ψ⟩ is ⟨ψ|Em |ψ⟩. Conversely, we can turn any POVM {Em}m∈M
into a general measurement by defining Mm :=

√
Em (which is well defined because the

operator is positive, which implies by the spectral theorem that it is diagonalizable in an
orthonormal basis with only positive eigenvalues:

√
Em is then obtained by taking the

square root of the diagonal entries).

This drives us to another kind of measurements: projective measurements. Sometimes
a measurement is specified by a single Hermitian operator M (i.e. M† = M), called
an observable. By the spectral theorem, M can be decomposed as M = ∑

mmPm,
where each Pm is a projector. We can then define our corresponding measurement as
Mm := Pm, and our probability of outputting outcome m when measuring a state |ψ⟩
becomes

⟨ψ|M†
mMm |ψ⟩ = ⟨ψ|P†mPm |ψ⟩ (2.43)

= ⟨ψ|Pm |ψ⟩ (2.44)

where the last inequality applies because Pm are projectors.
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2.1.3 Density Operator

Mixed quantum states. It is possible to generalize the notion of pure quantum states
to mixed quantum states, in order to characterize distributions of quantum states and
the discarding process. Indeed, we can consider the following scenario: a process outputs
a pure quantum state according to the distribution {(pi, |ψi⟩)}i, i.e. it outputs a state
|ψi⟩ with probability pi. Then, let us consider an arbitrary measurement {Mm}m∈M
performed on a state produced by this process. Then, for a fixed m, the probability of
getting outcome m is equal to

p(m) =
∑
i

pi ⟨ψi|M†
mMm |ψi⟩ (2.45)

=
∑
i

pi Tr
(
⟨ψi|M†

mMm |ψi⟩
)

(2.46)

= Tr
(

M†
mMm

(∑
i

pi |ψi⟩ ⟨ψi|
))

(2.47)

We can see that ρ := ∑
i pi |ψi⟩ ⟨ψi| ∈ L (H) (where L (H) is the set of linear operators

from H to itself) is enough to characterize all the possible measurement outcomes for
this distribution: ρ is called the density operator. Note that ρ has trace 1 and is positive
(for all |ϕ⟩, ⟨ϕ| ρ |ϕ⟩ ≥ 0): Conversely, the spectral theorem tells us that any positive,
trace 1 operator ρ can be written as a density operator ρ = ∑

i pi |ψi⟩ ⟨ψi| with ∑i pi = 1.
It is therefore necessary and sufficient for a density operator to be positive with trace
1. The probability of getting outcome m can now be expressed only using the density
operator ρ:

p(m) = Tr
(
M†

mMmρ
)

(2.48)

If we restrict ourselves to a POVM measurement {Em}m∈M, this simplifies further:

p(m) = Tr(Emρ) (2.49)

As a side node, the following inequality can be useful when considering systems on
multiple systems: one can easily prove—using standard linear algebra—that for any
matrix A and B,

Tr(A⊗B) = Tr(A)⊗ Tr(B) (2.50)

Note that density operators generalize pure quantum states since a pure quantum
state |ψ⟩ can be represented as the density operator ρ := |ψ⟩ ⟨ψ|. Conversely, a density
operator ρ is said to be a pure state if there exists a state |ψ⟩ ∈ H such that ρ = |ψ⟩ ⟨ψ|.
Pure states can easily be recognized since their trace is equal to 1.
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It is possible to translate all the previous axioms in the formalism of density operators:
If we consider the state obtained after measuring outcome m, it is not hard to show that
this gives rise to a new distribution of quantum states whose density operator is

ρm = MmρM†
m

Tr(M†
mMmρ)

(2.51)

Similarly, if we sample a state according to the distribution {(pi, |ψi⟩)}i (whose density
operator is ρ) and apply on it a unitary U, the resulting distribution is equivalent to
{(pi,U |ψi⟩)} and its corresponding density operator can be expressed using solely ρ:

ρ′ =
∑
i

piU |ψi⟩ ⟨ψi|U† (2.52)

= UρU† (2.53)

Discarding. Density operators can also be useful to represent a discarding process or
a partial system. For instance, if we consider |ψ⟩ ∈ HA⊗HB a quantum state shared by
two parties Alice and Bob, we can try to see what Alice can learn about |ψ⟩ without
having access to Bob’s system (i.e. Bob’s system is discarded). But first, let us introduce
the partial trace TrB, which will prove to be useful later.

Let us consider two quantum systems A (held by Alice) and B (held by Bob),
whose associated Hilbert spaces are respectively HA and HB. Then, for any vectors
(|a1⟩ , |a2⟩) ∈ H2

A and (|b1⟩ , |b2⟩) ∈ H2
B, we define the partial trace over system B5 as

TrB(|a1⟩ ⟨a2| ⊗ |b1⟩ ⟨b2|) := |a1⟩ ⟨a2|Tr(|b1⟩ ⟨b2|) = ⟨b2|b1⟩ |a1⟩ ⟨a2| (2.54)

Then, we can extend this definition by linearity to any density operator ρ on the joint
system HA ⊗ HB, and we denote ρA := TrB(ρAB) the reduced density operator on
system A obtained after tracing out the system B. Note that for any ρAB and M,
Tr(TrB(ρAB)) = Tr(ρAB) and TrB((M⊗ I)ρAB) = M TrB(ρAB) = MρA.

We can now see how to represent a discarding operation. As pointed out in Re-
mark 2.1.2, any information Alice can learn about ρAB can be described by a single
measurement {Mm}m∈M performed on her system, which is equivalent to performing a
measurement {Mm ⊗ I}m∈M on the joint system HA ⊗HB. The probability of getting

5This definition can similarly be extended to partial trace over system A and to partial trace over
larger systems.
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outcome m is then equal to:

p(m) = Tr((Mm ⊗ I)†(Mm ⊗ I)ρAB) (2.55)
= Tr(((M†

mMm)⊗ I)ρAB) (2.56)
= Tr(TrB(((M†

mMm)⊗ I)ρAB)) (2.57)
= Tr(M†

mMm TrB(ρAB)) (2.58)
= Tr(M†

mMmρ
A) (2.59)

Therefore, when discarding a part of a system (here the system B), the remaining part
of the system can be represented by the (reduced) density operator ρA = TrB(ρAB).

Quantum Channels. With this new representation, we can see what is the most
general operations one can perform on a density operator. Such an operator E : L (HA)→
L (HB), called Completely-Positive Trace-Preserving map (CPTP map for short), must
be:

• Linear : For any probability distribution {pi} and for any density operators {ρi}

E
(∑

i

piρi

)
=
∑
i

piE(ρi) (2.60)

• Trace Preserving: Since a density operator must have norm 1, we expect to have for
any positive operator ρ, Tr(E(ρ)) = Tr(ρ). This requirement is sometimes weakened
(E is then said to be a quantum operation), and E is then asked to be a non-trace-
increasing map, i.e. for any (normalized) density operator ρ, 0 ≤ Tr(E(ρ)) ≤ 1. In
this case, the quantity Tr(E(ρ)) corresponds to the probability of applying E , and
the post-measured state must be renormalized into E(ρ)/Tr(E(ρ)).

• Completely-positive: For any positive ρ, E(ρ) is positive. Moreover, for any Hilbert
space C and any positive operator ρ : L (HA⊗HC)→ L (HB ⊗HC), (E ⊗ I)(ρ) is
positive. This is required to ensure E maps density operators to density operators.

The Kraus decomposition is useful to characterize all CPTP maps and quantum
operations:

Theorem 2.1.4 (Choi-Kraus’ theorem). A map E : L (HA)→ L (HB) is a CPTP map
(respectively a quantum operation) if and only if there exist some operators {Ei} such
that ∑i E

†
iEi = I (respectively ∑i E

†
iEi ≤ I) and if for any ρ ∈ L (HA):

E(ρ) =
∑
i

EiρE†i (2.61)

This is known as the Kraus decomposition of E .
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CPTP maps can be shown to be isometries:

Tr(E(ρ)E(σ)) = Tr(ρσ) (2.62)

Note that we can also generalize CPTP maps to processes having both a classical
and a quantum output as introduced in [DL70]:

Definition 2.1.5 (Quantum Instrument). A map Λ : Cn×n → {0, 1}m1×Cm2×m2 is said to
be a quantum instrument if there exists a collection {Ey}y∈{0,1}m1 of trace-non-increasing
completely positive maps such that the sum is trace-preserving (i.e. for any positive
operator ρ, ∑y Ey(ρ) = Tr(ρ)), and, if we define ρy = Ey(ρ)

Tr(Ey(ρ)) , then Pr
[

Λ(ρ) = (y, ρy)
]

=
Tr(Ey(ρ)).

2.2 Graphical representation of Quantum
Operations

2.2.1 Quantum Circuits

It is frequent to create a quantum state or run an algorithm by applying several elementary
operations, usually corresponding to single or two-qubits unitaries and measurements.
Quantum circuits are commonly used to represent these operations, mimicking classical
circuits. A quantum circuit is made of multiple wires, each wire representing typically
a qubit. Some gates are drawn on these wires and are applied on the corresponding
qubit(s), the leftmost gates being applied first.

|0⟩ H

|0⟩

Figure 2.4: A quantum circuit.

For instance, a quantum circuit is drawn in Figure 2.4. In this circuit, the initial state
is |00⟩. Then, we apply the Hadamard gate H on the first qubit (i.e. we apply H ⊗ I
on the 2-qubit system), giving the state 1√

2(|00⟩ + |10⟩). The next step is to apply a
CNOT gate (not to be confused with the ∧Z gate, which is symmetric and represented

by or
Z

), which produces the state
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1√
2

(|00⟩+ |11⟩) (2.63)

This state is very famous and is called a Bell pair (also known as EPR pair). Finally,
we measure this Bell pair in the computational basis, leading to the outcome 00 with
probability 1

2 and to the outcome 11 with probability 1
2 .

Similar to classical circuits, it is possible to define a universal set of gates, which is a
minimal set of gates that guarantees that any computation can be performed using only
these gates. This is possible when using the set

{H,CNOT}
⋃
{Rz(θ) : θ ∈ [0; 2π)} (2.64)

However, this set is not really practical since it is continuous and hard to implement in
fault-tolerant quantum computing. Fortunately, as proven by Solovay and Kitaev [Kit97,
DN06] the following famous and simpler set can be used to approximate any unitary up
to an arbitrarily small precision:

{H,CNOT,T} (2.65)

2.2.2 Diagrammatic Reasoning on Quantum Computing: the
ZX-Calculus

While quantum circuits are handy to represent operations on quantum states, they are
not a substitute to algebra: in order to compute the final state obtained after running a
circuit, it is typically necessary to do quite heavy computations, potentially involving
large vectors. Moreover, it can be difficult to gain much intuition when using raw algebra
to perform computations. On the other hand, the ZX-Calculus—initially introduced
by Bob Coecke and Ross Duncan [CD08]—provides a way to graphically represent a
circuit or a matrix using a diagram with a graph-like structure: computations can be
performed directly by rewriting parts of the graph. It has numerous advantages over
plain linear algebra: computations are often simpler, more elegant, less error-prone,
and it is easier to gain an intuition on the underlying computation. Again, it is not
mandatory to know the ZX-Calculus to understand this thesis—a careful reader could
check any computation done in the ZX-Calculus using standard linear algebra—but the
ZX-Calculus will help in multiple places. As already mentioned, we redirect the reader
interested in the ZX-calculus to this review [vdWet20] and to the “Dodo book” [CK17]
which offers a very interesting and general approach to diagrammatic reasoning (I would
have loved to introduce the no-cloning and no-signaling principles using the approach
formulated in [CK17], but I refrained for the sake of brevity).
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ZX-diagrams. The basic structure in the ZX-calculus is an open graph known as a
ZX-diagram, with some input and output wires. The time flows from left to right, so the
inputs are entering the nodes from the left, and the outputs are leaving the nodes from
the right. Each graph has an associated interpretation, denoted J ·K, which is a complex
matrix. Here are the generators of a ZX-diagram, together with their interpretation:

• Empty diagram: J K =
(
1
)

• Wire (identity): J K = |0⟩ ⟨0|+ |1⟩ ⟨1|
• Green spider: Jn ... α

...mK = |0⟩⊗m ⟨0|⊗n + eiα |1⟩⊗m ⟨1|⊗n

• Red spider: Jn ... α
...mK = |+⟩⊗m ⟨+|⊗n + eiα |−⟩⊗m ⟨−|⊗n

• Hadamard6: J K = |+⟩ ⟨0|+ |−⟩ ⟨1|
• Swap: J K = |00⟩ ⟨00|+ |10⟩ ⟨01|+ |01⟩ ⟨10|+ |11⟩ ⟨11|
• Bell state: J K = |00⟩+ |11⟩ ∝ 1√

2(|00⟩+ |11⟩)
• Bell projection: J K = ⟨00|+ ⟨11| ∝ 1√

2(⟨00|+ ⟨11|)
Moreover, when α = 0, we can omit the α in the spiders. Similarly to quantum circuits,
it is then possible to compose multiple ZX-diagrams in two ways, as shown in Figure 2.5:

• Sequentially, by connecting two ZX-diagrams horizontally and making sure that
the output wires of the first diagram D1 are connected to the input wires of the
second diagram D2. The resulting interpretation is the product of the matrices:
JD1D2K := JD2KJD1K.

• In parallel, by stacking two ZX-diagrams vertically. The resulting interpretation is

the tensor product of the matrices:
t
D1

D2

|

:= JD1K⊗ JD2K.

= =

:= =

π

π
2

9π
4

= 9π
4

π
2

π

Figure 2.5: Example of ZX-diagrams, and illustration of the only connectivity matters
principle which provides equalities between diagrams

6Hadamard is introduced here as a generator, but it is mostly a “syntaxic sugar”: it can be made
from green and red spiders as shown later in the rules
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Rules for Clifford ZX-calculus. In order to obtain the interpretation of a given
diagram, it is of course possible to follow an approach similar to the one used in quantum
circuits, i.e. replace each generator by its interpretation and manually compute the
resulting matrix. However, in many cases it is more convenient to use a set of rules to
rewrite the ZX-diagram into a simpler ZX-diagram. The first rule of the ZX-calculus is
that only connectivity matters, i.e. two diagrams have the same interpretation if their
nodes are connected in the same way (regardless of whether the wire goes out or in the
node), even if the nodes are moved across the plane and the wires are bended. The only
requirement is that the order and number of inputs and outputs of the whole ZX-diagram
must be preserved. This principle is illustrated in Figure 2.5.

The other rules are presented below. Note that these rules are complete for a fragment
of the circuits called the Clifford fragment, but additional rules (which are not useful in
this thesis) can be used to obtain a complete generic ZX-calculus. Note that all these
rules stay true when read from right to left, when colors are inverted and when phases
are negated. The dots means “0, 1 or more wires”.

• Only connectivity matters (C):
See explanation above and illustration
in Figure 2.5.

• Spider rule and loop rule (S): It is
possible to merge any connected spi-
der with the same color, even if they
have some loops by summing angles
modulo 2π.

n ... α β
...m

... ...

... S= n ... α+β
...m

• Identity rule (I): Any node with no
angle (i.e. angle 0) can be removed.

I=

• Scalar rules (IV):
√

2× 1√
2 = 1.

IV=

• Copy rule (CP):

=

• Bialgebra rule (B): Illustrates the
fact that the copy operation “com-
mutes” with XOR.

=

• π-commutation and copy (K)

π α
...
K=

π

−α

π

...

α π

• Euler decomposition (EU): The
Hadamard gate can be decomposed
into multiple rotations on the block
sphere.

EU=
9π

2

π
2

π
2

π
2

=
9π

2

π
2

π
2

• Hadamard (H): The Hadamard gate
swaps the basis.

α
...

...
H= α

...
...
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In particular:

I= H= I=

• Zero (ZO): A node with no in-
put/output with an angle π is equal
to zero. In that case, basically all in-
equalities become true, even changing

the color of a node.

π ZO= π

• Hopf law: (derivable from the above
rules)

Ho=

Scalars. Note that these rules include some scalars like J K =
√

2, which are discon-
nected sub-graphs without any inputs nor outputs (and therefore whose interpretation is
a matrix of size 1× 1). Scalars can be freely moved across the diagram, and multiply the
whole interpreted matrix. It is also often convenient to get rid of the scalars: all equalities
stay true up to a global phase and a normalization factor, factor which is usually easy to
recover at the end of the computation if needed since the norm must stay unchanged
(and a quantum state always have norm 1). We will therefore often omit them, but we
included the scalars in the rules for completeness. We list here the interpretation of
common scalars (these equations are also true when the colors are inverted):

= 2 π = 0 α = 1 + eiα

α =
√

2 α π =
√

2eiα = 1√
2

(2.66)

α β = 1√
2

(1 + eiα + eiβ − ei(α+β))

In the following, we will remove all non-null scalars. For instance, when removing
scalars we can derive what is called the Y-state identity 9π

2 = π
2 (which is true up to

a global phase), which is useful for instance to prove the equivalence between the two
versions of the EU rule:

9π
2

H= 9π
2

EU= 9π
2

π
2

π
2

π
2

S=
π
2

π
2

CP= π
2

S= π
2 (2.67)

Usual states and gates. One can turn a quantum circuit into a ZX-diagram using
the following table. A careful reader can check the correctness of the gates either by
computing the interpretation of each gate, or by evaluating them on each basis vector
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using the ZX rules presented above.

=
√

2 |0⟩ ∝ |0⟩ π =
√

2 |1⟩ ∝ |1⟩ π = Gate X (2.68)
=
√

2 |+⟩ ∝ |+⟩ π =
√

2 |−⟩ ∝ |−⟩ π = Gate Z (2.69)
α = Rx(α) α = Rz(α) 9π

2 α π
2 = Ry(α) (2.70)

= 1√
2

CNOT ∝ CNOT = 1√
2
∧Z ∝ ∧Z (2.71)

Measurements. As it, the ZX-calculus does not provide a way to add a measurement,
and it is only possible to use projectors like (the scalar is required for normalization but
will be dropped soon):

r z
= ⟨0|

s
π

{
= ⟨1| (2.72)

While these “gates” are technically not physical because they look like postselection (i.e.
it forces the outcome of a measurement), they can be seen as a mathematical tool to
compute the probability of measuring a given outcome. For instance, using standard
linear algebra, when measuring the state |+⟩, the probability of measuring 0 is given by

|⟨0|+⟩|2 =
∣∣∣∣∣⟨0| 1√

2
(|0⟩+ |1⟩)

∣∣∣∣∣
2

=
(

1√
2

)2

= 1
2 (2.73)

Similarly, one can compute in ZX-calculus∣∣∣∣r z∣∣∣∣2 (2.66)=
(√

2× 1√
2
× 1√

2

)2

= 1
2 (2.74)

where the blue dashed box corresponds to a |+⟩ state with the appropriate normalization
scalar 1√

2 and the rest is the projector.
However, this is cumbersome to use for two reasons: first the normalization scalars are

a bit annoying to maintain, and secondly we need to do these computation multiple times,
one for each measurement outcome: the advantage over linear algebra is not clear. The
later problem can easily be solved in multiple ways. One solution is to introduce binary
variables a ∈ {0, 1} in order to code the outcome of the measurement. A measurement in
the computational basis would then become (up to the normalization factor) aπ , with
a = 0 when the outcome is 0 and a = 1 when the outcome is 1 (a green spider would
represent a measurement in the {|+⟩ , |−⟩} basis). The ZX rules are still correct (aπ can
be seen as an arbitrary angle), and the π-commutation law can be improved:

aπ θ
... =

aπ

(−1)a
θ

aπ

...

θ aπ

(2.75)
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We can also prove that (up to scalars) α aπ = aπ :

α aπ
S=

aπ

α

(2.75)=
aπ

aπ

α

CP= aπ
S= aπ (2.76)

That way, instead of maintaining one diagram per outcome, we can maintain a single
diagram, simplifying the computations.

To avoid using normalization scalars, it is often enough to use the fact that quantum
states have norm 1 to recover the normalization factor at the end of the computation.
The only problematic case is if we want to know the probability of measuring a given
outcome. In that case, if we simplified the computation using the variables aπ and the
above rules, it is possible to recover the probability at the end of each measurement
outcome using the fact the probabilities must sum to one.

Example. We can now compute as before the outcome given by the circuit pictured in
Figure 2.4, after replacing each part of the circuit by the appropriate diagram:

aπ

bπ

H=
aπ

bπ

S=
aπ

bπ

I=
aπ

bπ

S= (a⊕b)π (2.77)

We see on the fourth diagram that the part of the circuit before the measurement produces
a Bell state. Then, to know the outcome of the measurement, we use the fact that when
c ∈ {0, 1}, J cπ K = 1 − c. Therefore J (a⊕b)πK = 1 − a ⊕ b. So the probability of getting
outcome (a, b) when a⊕ b = 1 (i.e. a ̸= b) is 0, and the probability of getting outcome
(0, 0) is the same as the probability of getting (1, 1), i.e. with probability 1/2 we get
outcome (0, 0) and with probability 1/2 we get outcome (1, 1).

2.3 Well-Known Quantum Protocols and Properties

2.3.1 No-cloning principle

One of the most stunning and basic property of quantum mechanics is that it is impossible
to copy perfectly an unknown qubit. More specifically:

Theorem 2.3.1 (No-cloning principle). Let H be a Hilbert space of dimension n ≥ 2.
There exists no CPTP map E : L (H)→ L (H⊗H) such that for any state ρ, E(ρ) = ρ⊗ρ
(even if we restrict ρ to pure states).
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Proof. Let (ρ, σ) ∈ L (H)2, and {Ei}i be the Kraus decomposition of E . By assumption,
E(ρ) = ρ⊗ ρ and E(σ) = σ ⊗ σ. We can now compute Tr(E(ρ)†E(σ)) in two different
ways using these equations. Either using the fact that E is an isometry:

Tr(E(ρ)†E(σ)) (2.62)= Tr(ρ†σ) (2.78)

Or using the fact that E is a copy map:

Tr(E(ρ)†E(σ)) = Tr((ρ⊗ ρ)†(σ ⊗ σ)) (2.79)
= Tr(ρ†σ ⊗ ρ†σ) (2.80)
(2.50)= Tr(ρ†σ)2 (2.81)

Therefore, Tr(ρ†σ) = Tr(ρ†σ)2, i.e. Tr(ρ†σ) is either 0 or 1 (i.e. ρ and σ are either
equal or orthogonal). Taking for instance the quantum states |0⟩ and |+⟩ for which
Tr(|0⟩⟨0||+⟩⟨+|) = Tr(⟨0| + |)⟩2 = 1

2 /∈ {0, 1}, we conclude that there exist no CPTP
map that can perfectly copy |0⟩ and |+⟩.

In particular, it is also impossible to distinguish perfectly two non-orthogonal states.
The trace distance is of great importance to quantify this indistinguishability:

Definition 2.3.2 (Trace Distance). The trace distance between two density operators ρ
and σ is defined as:

DTD(ρ, σ) := 1
2 Tr(|ρ− σ|) (2.82)

where |A| :=
√
A†A can be computed by diagonalizing A†A (it is always possible by the

spectral theorem) and by applying a square root on all eigenvalues.

The trace distance is a measure on how hard it is to distinguish two quantum states
as it can be shown that

DTD(ρ, σ) = max
0≤P≤I

Tr(P (σ − ρ)) (2.83)

(the proof basically diagonalize ρ − σ into a positive and a negative part, see for in-
stance [NC10, Sec 9.2.1]). Notably, it is equal to the advantage in distinguishing if a
state is equal to ρ or σ (this is a particular case of the Helstrom bound [Hel69, Hol73,
BK15]).
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2.3.2 No-signaling principle

Because the state of a bipartite system instantaneously changes when one party performs
a local operation, one may want to use this to communicate faster than light. However,
this is impossible, and known as the no-signaling principle, or no-communication theorem.

To see that, let us imagine that two parties A and B share a bipartite state ρ,
decomposed into ρ = ∑

j Tj ⊗ Sj . Then, if the first party A applies locally a CPTP map
E(σ) = ∑

i EiσE†i , the view of party B is:

TrA
(∑

i

(Ei ⊗ I)ρ(Ei ⊗ I)†
)

= TrA

∑
i,j

(Ei ⊗ I)(Tj ⊗ Sj)(Ei ⊗ I)†
 (2.84)

=
∑
i,j

TrA
((

EiTjE†i
)
⊗ Sj

)
(2.85)

=
∑
i,j

Tr
(
EiTjE†i

)
Sj (2.86)

=
∑
i,j

Tr
(
TjE†iEi

)
Sj (2.87)

=
∑
i,j

Tr
(
Tj

)
Sj (2.88)

= TrA(ρ) (2.89)

Said differently, the view of B does not depend on E at all, which means that
no-communication is possible between A and B by applying only local operations.

2.3.3 Quantum Unitaries of Classical Functions

Given a classical function f : {0, 1}n → {0, 1}m described by a classical circuit, it is always
possible to efficiently derive a quantum circuit computing this function in superposition,
i.e. a unitary Uf on H2n ⊗H2m such that for any x ∈ {0, 1}n and b ∈ {0, 1}m:

Uf (|x⟩ |b⟩) := |x⟩ |b⊕ f(x)⟩ (2.90)

where ⊕ is a bitwise XOR operation (sum modulo 2). Note that in general it is not
possible to obtain for any f a unitary U′f such that U′f |x⟩ = |f(x)⟩ because a unitary
must be invertible, which is also the reason of the presence of the XOR. However, in this
thesis we will be particularly interested by the particular case where b = 0:

Uf (|x⟩ |0⟩) = |x⟩ |f(x)⟩ (2.91)

It is frequent to group qubits depending on their role, and such a group is called a register.
For instance, here we have two registers, one with n qubits containing |x⟩, and one with
m qubits containing |f(x)⟩.
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The equation Eq. (2.90) can be obtained by using the fact that the classical Toffoli
gate (a, b, c) 7→ (a, b, c⊕ ab) is universal when using an auxiliary register, i.e. it is always
possible to create a circuit using only Toffoli gates computing

(x, 0 . . . 0, 1 . . . 1) 7→ (x, f(x), g(x)) (2.92)

where g(x) is an extra garbage output. Then, the Toffoli gate (and therefore the
whole circuit) can be implemented quantumly, using for instance the construction given
in [NC10, p. 182], leading to a unitary Ũf |x⟩ |0 . . . 0⟩ |1 . . . 1⟩ = |x⟩ |f(x)⟩ |g(x)⟩. The
trick to remove the |g(x)⟩ part is to first apply CNOT gates to copy f(x) on a fourth
register:

|x⟩ |f(x)⟩ |g(x)⟩ |b⟩ 7→ |x⟩ |f(x)⟩ |g(x)⟩ |b⊕ f(x)⟩ (2.93)

and then applying Ũ†f to invert what was done on the first 3 registers, giving back:

|x⟩ |0 . . . 0⟩ |1 . . . 1⟩ |b⊕ f(x)⟩ (2.94)

The second and third registers, called auxiliary registers (or sometimes ancilla) are
therefore left untouched by the whole operation and are usually omitted. Therefore, the
whole process turns |x⟩ |b⟩ into |x⟩ |b⊕ f(x)⟩.

2.3.4 Entanglement

One of the main features of quantum information theory is entanglement, which states
that to describe a quantum state, it is not enough to describe each part separately. More
precisely, a bipartite state |ψ⟩ (i.e. a state belonging to a Hilbert space composed of two
systems HA ⊗HB) is said to be entangled if it cannot be written as a tensor product of
two states, i.e. if for any |ϕA⟩ ∈ HA and |ϕB⟩ ∈ HB, we have

|ψ⟩ ≠ |ϕA⟩ |ϕB⟩ (2.95)

The Bell states

|Φ+⟩ = 1√
2

(|00⟩+ |11⟩) |Φ−⟩ = 1√
2

(|00⟩ − |11⟩) (2.96)

|Ψ+⟩ = 1√
2

(|01⟩+ |10⟩) |Ψ−⟩ = 1√
2

(|01⟩ − |10⟩) (2.97)

are famous entangled state and form a basis of H22 . Entanglement is a crucial quantum
property, and turns out to be useful in many protocols as we will see.
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2.3.5 Quantum Teleportation

Quantum teleportation is a quantum protocol between two parties, say Alice and Bob,
pre-sharing a Bell state. The goal of Alice is to send a qubit to Bob by communicating
only classically. It is surprising that such a protocol exists because a qubit can potentially
require an infinite amount of classical bits to be fully described, and measuring a quantum
state usually disturbs (if not destroys) the quantum state. In contrast, in this protocol
Alice only needs to send two bits of information to Bob.

Bell measurement

|Ψ+⟩ Corrections

Alice
|ψ⟩ H a

|0⟩ H b

Bob |0⟩ Xb Za

Alice sends (a, b) to Bob

The ZX-calculus provides a simple and elegant proof of correctness, where the flow of
information is well visible (note that the gate Za is translated into aπ ):

aπ

bπ

bπ aπ

H,S,I
cf. (2.77)=

aπ

bπ

bπ aπ

S= aπ aπ

I,S= (2.98)

In the second diagram, it is clear that Alice and Bob share a Bell state and that the
operation performed by Bob is a Bell measurement, i.e. a projection on one of the four
Bell states. At the end, we obtain as expected an identity wire, so any qubit (even
arbitrarily entangled into a larger systems) given by Alice will be transfered to Bob.

2.3.6 Measurement-Based Quantum Computing

In the next two sections, we will see how a weak quantum client can do blind quantum
computing using the Universal Blind Quantum Computing (UBQC) protocol. The take-
home message of these sections is that it is possible to do blind quantum computing as
soon as the client can send many quantum states |+θ⟩, where θ is sampled uniformly at
random over {0, π4 . . . 7π

4 }. The QFactory protocol—which is one of the main contributions
of this thesis—will fake this quantum channel using a purely classical channel, and will
be modularly inserted into the UBQC protocol. For that reason, a reader interested by
the QFactory but not by its applications can skip these sections.
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First approach to MBQC. Measurement-Based Quantum Computing (MBQC, it
is also called one-way quantum computer) [RB01, RB02, RBB03, DK06] is a method
used to perform computations: instead of doing a computation by applying appropriate
unitaries, in MBQC the computation is done by doing appropriate measurements. This
will prove to be extremely useful later to do blind quantum computing [BFK09], as we
will see how to hide a measurement. In MBQC, instead of using few qubits on which
we apply many operations, we use many qubits but apply few operations on them. We
typically use ∧Z gates and measurements with angle θ, i.e. destructive measurements
in the {|+ϕ⟩ , |+−ϕ⟩} basis (when measuring |+ϕ⟩ we say that the outcome is 0 and 1
otherwise). We will soon see the precise definition of an MBQC computation, but for
now it is enough to say that an MBQC computation is performed in 3 stages:

• During a first stage the input qubits and some auxiliary |+⟩ qubits will be entangled
using ∧Z gates: this will form an entangled graph state G = (V,E), where (i, j) ∈ E
if a gate ∧Z was applied between qubits i and j.

• During a second stage, some qubits i will be measured with angle ϕ′i (note that ϕ′i
will depend on the previous measurement outcomes in order to obtain determinism).
The non-measured qubits will be the output qubits.

• During the first stage, we will apply some corrections on the output qubits to
correct non-determinism coming from measurements.

Intuitively, when measuring a qubit in an MBQC computation, this qubit will be
“teleported” on the neighboring qubits and slightly modified depending on the value
of the measurement angle. By repeating this process we will be able to perform any
computation.

Forcing deterministic output. Before giving the formal MBQC definition and
algorithm, we will start with three small examples that will come in handy to understand
how MBQC corrects the non-determinism inherent to quantum measurements. First
consider the following MBQC-like circuit (composed of a ∧Z gate and a measurement
with angle ϕ whose outcome is a) applied on a qubit |ψ⟩:

|ψ⟩ Rz(−ϕ) H

|+⟩
= −ϕ aπ H,S,I= −ϕ+aπ (2.99)

We see that this circuit is outputting HRz(−ϕ+ aπ) |ψ⟩. Note that this gate is not (yet)
deterministic, as it depends on the outcome a. Because −ϕ+aπ

S= −ϕ aπ
H=

−ϕ aπ
H= −ϕ aπ , it is easy to see that one can get rid of the aπ node by
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applying a gate Xa (called a correction) on the second qubit after the measurement:

|ψ⟩ Rz(−ϕ) H a

|+⟩ Xa

= −ϕ aπ aπ
S= −ϕ (2.100)

The resulting applied gate is HRz(−ϕ), which is now deterministic.

Now, let us see how determinism can be enforced on larger graph states. First, if we
increase the “width” of the graph, i.e. if more than one |+⟩ is entangled with |ψ⟩, we can
apply the Xa correction on any neighbouring |+⟩ of our choice, as soon as we apply this
correction only once (we can see that by reordering wires and commuting ∧Z gates):

|ψ⟩ Rz(−ϕ) H a

|+⟩

|+⟩ Xa

=

|ψ⟩ Rz(−ϕ) H a

|+⟩ Xa

|+⟩
(2.100)= −ϕ S,I= −ϕ (2.101)

We can also increase the “depth” of the graph by chaining ∧Z gates:

|ψ⟩ Rz(−ϕ) H a

|+⟩
|+⟩
|+⟩

=
−ϕ aπ

(2.102)

H,S,I=
−ϕ+aπ

S,H=

−ϕ

aπ K=

−ϕ

aπ

aπ

aπ

H=

−ϕ

aπ

aπ

aπ

(2.103)

This shows that in order to come back to a deterministic computation, one must perform
an Xa gate on the first qubit (i.e. the direct neighbor), and a Za gate on the second and
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third qubits (i.e. the neighbors of the neighbor):

|ψ⟩ Rz(−ϕ) H a

|+⟩ Xa

|+⟩ Za

|+⟩ Za

(2.103)=

−ϕ

aπ aπ

aπ aπ

aπ aπ

S=
−ϕ

(2.104)

One may want to try to consider longer sequences of ∧Z, but it is not needed since the
corrections will not propagate further due to the fact that ∧Z commutes with Z.

By generalizing these three examples, we can see that in order to have a deterministic
output when measuring a qubit i, we need to apply an Xa correction on one neighbor
qubit j (this choice can be expressed using a function f(i) := j), and a Za correction on
all the neighbors k of j (except i). Of course, this works only if all the neighbors k have
not yet been measured, otherwise we will not be able to apply the correction. If we can
find an order of measurement and f such that these conditions are met (we say that G
has a flow), then we can obtain a deterministic computation.

Merging corrections with measurements. The above corrections were applied
directly using a gate. It was fine because all the qubits were output qubits. However,
if the qubits are supposed to be measured after, we do not want to apply these gates
directly (first for efficiency reasons, but also because for cryptographic applications a
will be kept secret). So we prefer to update instead the measurement angle: if a qubit
gets an Xa correction and is then supposed to be measured with angle γ, we can instead
measure it with angle (−1)aγ:

aπ −γ bπ
(2.75)= −(−1)a

γ aπ bπ
H= −(−1)a

γ aπ bπ
(2.76)= −(−1)a

γ bπ (2.105)

Similarly, if the correction was Za, we can simply perform a measurement with angle
γ + aπ:

aπ −γ bπ
S= −(γ+aπ) bπ (2.106)
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For instance, the following deterministic computation

|ψ⟩ Rz(−ϕ) H a

|+⟩ Xa Rz(−γ) H b

|+⟩ Xb Za

(2.107)

can be turned into

|ψ⟩ Rz(−ϕ) H a

|+⟩ Rz(−(−1)aγ) H b

|+⟩ Xb Za

(2.108)

Formal definition of MBQC. We can now combine the above ideas to properly
define MBQC:

Definition 2.3.3. An MBQC computation is described by a pattern (G, I,O, {ϕi}i∈Oc , <

, f), where G = (V,E) is a graph, I ⊆ V is the set of input nodes, O ⊆ V is the set of
output nodes, {ϕi}i∈Oc (where Oc denotes the set of nodes in V which are not in O) is a
family of measurement angles, < is an order on V (intuitively corresponding to the order
in which the qubits will be measured), and f : Oc → Ic is a function such that:

• (i, f(i)) ∈ E
• f(i) > i

• for any neighbor k of f(i), k > i

Moreover, given such a pattern, we can run an MBQC computation as explained in
Algorithm 1.

Universal set of gates. The Algorithm 1 shows how to run an MBQC computation
given a pattern, but does not explain how to choose the pattern. We describe now how
to design this patterns to run any computation. But quantum circuits quickly get too
big when considering more than a few qubits, so we will use a different representation to
describe a pattern:

• The graph G will be represented using green nodes for vertices, and edges will
have a yellow node7 in between like .

7Yes, it looks like ZX-calculus. . . but no worries, we will see that this representation also make sense
when read as a ZX-diagram. Note that our representation is not exactly the original one (a pattern was
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Algorithm 1 MBQC computation
Inputs: An MBQC pattern (G = (V,E), I, O, {ϕi}i∈Oc , <, f), and for each i ∈ I an
input qubit labelled i.
Output: For each i ∈ O, an output qubit labelled i.
Algorithm:

1. For each i ∈ Ic, prepare a qubit |+⟩ and label it i.
2. For each edge (i, j) ∈ E, apply ∧Z between qubits i and j.
3. For each i ∈ V , initialize sXi := 0 and sZi := 0.
4. For each i ∈ Oc (taken in the ascending order implied by <):

a) Measure qubit i with angle ϕ′i := (−1)s
X
i ϕi + sZi π to obtain a measurement

outcome si.
b) Update sXf(i) := sXf(i) ⊕ si and for all neighbors k of f(i) except i, update

sZk := sZk ⊕ si.
5. For each output qubit i ∈ O, apply Xs

X
i Zs

Z
i on qubit i.

• Any vertex i ∈ Oc is labelled 9ϕi .
• Any input vertex i ∈ I has an additional edge (without any yellow node) arriving

from its left: .
• Any output vertex i ∈ O has an additional edge (without any yellow node) leaving

from its right: .
• For any vertex i ∈ Oc, we add on the edge (i, f(i)) an arrow tip going towards f(i):

9ϕi 9ϕj

• The order < will be implicitly described by the position of the vertices in the grid:
the left-most qubits are measured first, and if two nodes are in the same column
we measure going from the top to the bottom.

For instance, our first example pictured in Eq. (2.100) has the pattern 9ϕ , our

second example Eq. (2.101) has the pattern
9ϕ

(when correcting the first wire) or
9ϕ

(when correcting the second wire), the example Eq. (2.108) has the pattern
9ϕ 9γ . What is nice with this notation is that if we interpret this pattern as a

ZX-diagram (forgetting the arrows), then the MBQC computation is exactly applying
the operation corresponding to the ZX-diagram. This can be checked for instance for our
first example in Eq. (2.100). This can also easily be verified formally by noting that if

typically represented using a labelled graph with standard edges (potentially directed to describe f) and
different shapes for input and outputs), but our representation will soon come in handy since we will be
able to use all the ZX-calculus machinery.
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in MBQC the outcome is zero then we are actually projecting on 9ϕi : using the spider
fusion rule we can merge it with the auxiliary to obtain 9ϕi . And if the measurements
are not zero, then the corrections forces the final state to be exactly the same as the one
obtained if the measurements would have all been zero.

We can now use this property to design the pattern of our gates. Note that due to
our interest in blind quantum computing, we want the graph to be the same for all gates
to make sure it does not reaveal information about the performed gates (this kind of
graph is called a brickwork state [BFK09] due to its shape). For these reasons, our basic
set of gates will be on two wires, and one-wire gates will be tensored with an identity
wire. Here is the pattern associated to the I gate, together with the proof of correctness:

0 0 0 0

0 0 0 0

I,H= S= H= Ho= H= = I⊗ I (2.109)

Here is the pattern associated to the H gate:
π
2

π
2

π
2 0

0 0 0 0

I,H=
π
2

π
2

π
2 S,H=

π
2

π
2

π
2 H=

π
2

π
2

π
2

(2.110)
Ho=

π
2

π
2

π
2 H,EU= = H⊗ I (2.111)

Now, this is the pattern associated to the Rz(π/4) gate:
π
4 0 0 0

0 0 0 0

S=
π
4 0 0 0 0

0 0 0 0

(2.109)=
π
4 = Rz(π/4)⊗ I (2.112)

And finally the pattern associated to the ∧Z gate:

0 0 π
2 0

0 π
2 0 9π

2

I,H=
π
2

π
2 9π

2

S=

π
2

9π
2

π
2

B=

π
2

9π
2

π
2

S=
π
2

9π
2

π
2

EU= H= = ∧Z (2.113)

Combining the gates to form a circuit. Now that we have our set of elementary
gates, it is possible to combine them to build any circuit. If we connect the output of
one pattern to the input of another patter, we obtain (after applying one trivial S rule) a
new pattern corresponding to the sequential composition of two computations. Because
our gates act on two qubits, we also need to the pattern pictured in Figure 2.6 (known
as brickwork state) to make sure we can apply any unitary on any qubit.
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U1 U4

U3 U6

U2 U5

U4 U6

U1 U4

⇒

Figure 2.6: Composing multiple gates in an MBQC computation. The nodes which are
not colored in the pattern are supposed to have phase 0, or for efficiency reason they can
also be replaced with wires. Other nodes have phases corresponding to the gates.

2.3.7 Universal Blind Quantum Computing

Universal Blind Quantum Computing [BFK09] (UBQC) is a protocol that allows a
weak quantum client Alice—able to prepare and send only |+θ⟩ states—to delegate
computations on a remote quantum server Bob without revealing her input, output and
algorithm (besides its size). It heavily relies on MBQC, except that:

• The potential input qubits of the client are one-time-padded8 by applying a ran-
dom XaZb gate before being sent to the server. The corrections will be adapted
accordingly.

• The auxiliary qubits are sent by the clients. Moreover, instead of sending |+⟩, the
client sends a random |+θi

⟩ where θi ∈ {0, π4 , . . . , 7π
4 }.

• The measurements are done by the server, but the corrected angles are sent by the
client.

• Instead of instructing a measurement with angle ϕi, the client will replace it with
δi := ϕi + θi + riπ, where ri $← {0, 1} is randomly sampled. The ri’s are useful to
hide the measurement outcome to the server using a one-time pad. For this reason,
the client needs to update the measurement si given by the server into s̄i := si ⊕ ri
and use this new value to compute the corrections as in the UBQC protocol.

This works because
...

θi −(ϕi+θi+riπ) siπ

...

S,H=
...

9ϕi (si⊕ri)π

...

s̄i:=si⊕ri=
...

9ϕi s̄iπ

...
.

Definition 2.3.4 (UBQC). The Universal Blind Quantum Computing protocol is described
in Protocol 1.

8The one-time-pad is a statistically secure encryption scheme in which a bit b is encrypted by
computing b⊕ r where r ∈ {0, 1} is sampled uniformly at random.
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Protocol 1 UBQC protocol
Parties: One weak quantum client (Alice) and one quantum server (Bob).
Alice’s inputs: A quantum circuit to evaluate, and a set I of input qubits (in this
thesis we will often restrict ourselves to circuits where the inputs are hard-coded into
the circuit).
Alice’s outputs: The qubits or measurements obtained after the evaluation of the
circuit on her inputs (in this thesis we will often restrict ourselves to circuits where
the outcomes are classical measurements).
Protocol:

1. Alice converts the circuit into a brickwork MBQC pattern (G, I,O, {ϕi}i∈Oc , <, f)
as explained in Section 2.3.6 and sends the description of the graph G = (V,E)
to Bob (typically the size of the circuit is enough to derive G).

2. For each i ∈ V , Alice initializes sXi := 0 and sZi := 0.
3. For each input qubit i ∈ I, Alice randomly samples (ai, bi) $← {0, 1}2, applies

XbiZai on qubit i and updates sZi := sZi ⊕ ai, sXi := sXi ⊕ bi and for the neighbors
k of i, sZk := sZk ⊕ bi.

4. For each i ∈ Ic, Alice samples θi $← {0, π4 , . . . , 7π
4 }, and sends to Bob a qubit |+θi

⟩
labeled i.

5. For each edge (i, j) ∈ E, Bob applies ∧Z between qubits i and j.
6. For each i ∈ Oc (taken in the ascending order implied by <):

a) Alice samples ri $← {0, 1} and sends δi := ϕi + (−1)s
X
i θi + sZi π + riπ to Bob.

b) Bob measures qubit i with angle δi, and sends the measurement outcome si
to Alice.

c) Alice corrects the measurement by defining s̄i := si ⊕ ri.
d) Alice updates sXf(i) := sXf(i)⊕ s̄i and for all neighbors k of f(i) except i, update

sZk := sZk ⊕ s̄i.
7. If Alice wants classical outcomes, Bob measures each qubit i ∈ O in the computa-

tional basis, sends the outcome si to Alice, and Alice updates it into s̄i := si⊕ sXi
before outputting them.

8. Otherwise, Bob sends each output qubit i ∈ O to Alice, who applies on it Xs
X
i Zs

Z
i

and outputs them.

To see that this protocol does not leak to Bob any information about the computation
(i.e. about any θi), we can rewrite this protocol into an equivalent protocol in which
it is clear that no information about θi can leak to Bob. First, we can remark that
instead of computing δi := ϕi + θi + riπ, we can rather sample the measurement angle
δi uniformly at random in {0, π4 , . . . , 7π

4 }, then sample ri $← {0, 1} and finally compute
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θi := δi − ϕi + riπ. Of course, the correctness is not impacted:
...

θi −(ϕi+θi+riπ) siπ

...

S,H=
...

δi−ϕi+riπ 9δi siπ

...

Moreover, instead of preparing |+ϕ̃i−ϕi+riπ
⟩, Alice can instead send half of a Bell pair to

Bob, and perform the appropriate rotation before measuring in the {|+⟩ , |−⟩} basis (this
virtual protocol is used of course only for the security proof, and would be too inefficient
to be used in practice):

δi−ϕi rπ

Alice
S= δi−ϕi+riπ

The interest of this construction is that it is now possible to push any action depending
on the secret computation ϕi after any deviation performed by Bob:

δi−ϕi rπ

Bob’s deviation

Alice

In particular, due to the no-signaling principle (see Section 2.3.2), the view of Bob
is independent of the operations performed by Alice. Therefore, Bob cannot learn
any information about the computation performed by Alice. This same argument can
be used to show that UBQC is secure even in the strong Constructive Cryptography
framework [DFP+14]
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Introduction to Cryptography

“If you want to keep a secret, you must also hide it from yourself.”

— George Orwell, 1984

Intuitively, a “secure” protocol is a protocol in which no attack is possible.
However, when formalizing this notion, we end up with different kinds of adversaries
and models of security that we introduce in this chapter. Note that the notions

which are necessary only for a single chapter (like LWE, Constructive Cryptography,
Zero-Knowledge) will be introduced in the relevant chapters.

3.1 Notations

We use the notation poly(λ) to denote any non-negative function f smaller than some
polynomials: ∃d ∈ N,Λ ∈ N,∀λ > Λ, f(λ) ≤ λd. negl(λ) will denote any negligible
function, i.e. any function f which decays faster than any inverse polynomial: ∀d ∈
N, ∃Λ ∈ N,∀λ > Λ, 0 ≤ f(x) ≤ 1

λ
N . An overwhelming function (or probability) is a

function f negligibly close to 1: f = 1− negl(λ).
We denote by s $← X the action of sampling s uniformly at random over a finite set

X. For two probability distributions P and Q on a countable set X, we define the (total
variation) statistical distance as ∆(P,Q) := supA⊆X |P (A) − Q(A)| = 1

2
∑
x∈X |P (x) −

Q(x)|. When X = {0, 1}, this quantity ∆(P,Q) = |P (1)−Q(1)| is called the advantage
and is linked with the best probability 1

2(1 + ∆(P,Q)) of being able to distinguish a
sample from P from a sample from Q.
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3.2 Parties, Protocols and Non-Uniformity

Protocol. A protocol π = (P(1), . . . ,P(n)) assigns to each party P(i) a list of instructions
that they should follow in order to perform a specific task (we will use the same notation
for the identifier of the party P(i) and for its instructions). Each party P(i) can have an
input, an output and can receive messages and send messages to other parties. Moreover,
each protocol is typically parameterized by a security parameter λ ∈ N: the bigger λ is,
the harder it is to attack the protocol. We will denote by

OUTAlice(Aliceλ(x)↭ Bobλ(y)) (3.1)

the random variable representing the output of the party Alice, where Alice’s input is
(1λ, x), Bob’s input is (1λ, y), λ being the security parameter of the protocol. Alone,
Aliceλ(x)↭ Bobλ(y) will be the random variable containing in a tuple the outputs of
Alice and Bob.

Interactive Party. Because cryptographic protocols are usually interactive (i.e. mes-
sages are sent and received at various points throughout a protocol), it is practical to
model any party (or adversary) P as a randomized process which is called each time a
message m is received from party s:

(((m′1, d1), . . . , (m′n, dn)), ρi+1)← P(m, s, ρi) (3.2)

This process outputs a list of messages m′i to send, together with the corresponding
recipient di. Moreover, ρi and ρi+1 are the internal states of P before and after the
communication, playing the role of a memory between runs and whose initial value ρ0

encodes1 the actual input of the party. To also allow parties to send the first message
without having received any message, s will be equal to ⊥ for the first call. If one dj is
equal to ⊥, the output of the party P is defined as ρi+1 and the party will be “stopped”
(it won’t be called anymore).

In this thesis, we will often have only two parties and a fixed number of rounds of
communication: in that case we will often decompose P into (P1, . . . ,Pn). We write
(m′i, ρi) ← Pi(mi, ρi−1) to denote the fact that after receiving from the other party a
message mi, the ith message sent by P is m′i (ρi and ρi−1 being defined as before). ρ0

1The exact encoding is not very important, for instance for quantum parties we could choose to
put the first qubit of the internal state in state |0⟩ to denote the fact that this is the input, and add
afterwards a quantum state encoding x. More generally, we always assume that we can encode all objects
into classical bit strings or quantum states (any bit string x can always be encoded into |x⟩).
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P1

ρ0 = |x⟩

ρ1

m1

m′1

P2

m2

m′2

ρ2...

Pn

ρn−1

mn

ρn

P

x

m1

m′1

m2

m′2

mn ρn

πB

πA

Figure 3.1: Representation of an interactive quantum party P into a sequence (P1, . . . ,Pn).
This representation is sometimes called “quantum comb” due to its shape.

will encode the input x of P, and ρn will be defined as the output of P. For brevity, we
will often omit the ρ’s from this notation and we will also remove m1 from P1 if P sends
a message before receiving any message, and m′n will be removed from Pn if P does not
send any message before outputting it’s result. This decomposition is sometimes referred
to as quantum comb (due to its shape) and was studied for instance in [CDP09, GW07].
This is illustrated in Figure 3.1.

Then, the processes P or (P1, . . . ,Pn) can be implemented in different manners:
• Using Turing machines (with a random tape) or classical circuits: P is then said

to be classical (all messages and the internal states are then classical). Moreover,
if P runs in polynomial time (in the length of its input, and therefore also in λ)
and if P is always stopped after a polynomial number of times, P is said to be PPT
(Probabilistic Polynomial Time).

• Using CPTP maps or quantum circuits: P is then said to be quantum. Moreover, if
the size of the circuit of P is polynomial (in the size of the input, i.e. in the number
of input qubits and therefore in λ), and if P is always stopped after a polynomial
number of times, P is said to be (interactive) QPT (Quantum Polynomial Time).
If P has no restriction on the size of its circuit, P is said to be computationally
unbounded (or simply unbounded).
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We may also give to a process P blackbox access to some oracles O : X → Y by denoting
it PO. P will then be able to query O but will not be able to see how O is implemented
internally (think of O as a new gate that can be inserted into the circuit of P).

It is possible to define more formally the notation P(1)
λ (x) ↭ P(2)

λ (y) . . . ↭ P(n)

introduced in Eq. (3.1) which defines the random variable of the output of the protocol
involving the parties (P(1), . . . ,P(n)). For brevity and readability, we won’t enter into too
much details, but this can easily be defined using an environment that calls each party
one after the other with the appropriate parameters depending on the messages sent
by other parties. There is, however, one small technical detail: the choice of the order
of the calls is important to ensure the above random variable is well defined (different
orders could lead to completely different distributions). When only correctness matters,
this can be solved by keeping a queue of the sent messages, and calling each party
following this queue. Note that well designed protocols should have the same output
distribution regardless of the evaluation order. For security, it is possible for instance to
use [PMM+17] to properly define this in complex time-dependent protocols with many
parties. In our case, most of the time the flow of messages is simple enough that this
won’t be necessary and we will just use quantum combs [CDP09].

Uniform and Non-Uniform Adversaries. An adversary is a party involved in a
protocol that may arbitrarily deviate from this protocol, typically in order to obtain
sensitive information or disturb the execution of the protocol. As for parties, adversaries
can be unbounded, PPT or QPT. If the protocol is proven secure against unbounded
adversaries, the protocol is said to be statistically or information-theoretically secure,
otherwise it is said to be computationally secure.. However, it is sometimes practical
to assume that adversaries have a little bit more power than PPT or QPT machines.
Namely, a non-uniform adversary A—which must be opposed to a standard uniform
adversary—accepts an additional input ρλ of size poly(λ). The {ρλ}λ∈N’s (which are
specified together with the considered adversary) can be seen as advices helping the
adversary. Note that this advice, which depends only on the size of the input, is not a
realistic assumptions: a polynomial-time machine having access to an additional advice
can solve problems in P/poly(λ) which is believed to be bigger than P. However, this is
used in practice to say that if a protocol is secure against non-uniform adversaries, then
the protocol is also secure against uniform adversaries.
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3.3 The Different Models of Security

Intuitively, a “secure” protocol is a protocol in which no attack is possible. However,
when formalizing this notion, we end up with different models of security having different
properties:

• Game-based security: The proofs are usually easier to derive in this model, but the
security guarantees are limited since we usually do not get any guarantee—without
further work—if the protocol is composed with other protocols.

• Standalone security: In this stronger model, we also get guarantees when the
protocols are composed sequentially (i.e. when protocols are run one after the other)
but not when they are composed in parallel (i.e. run at the same time). This will
also prove useful when defining later Zero-Knowledge proofs.

• General composable security: General composability provides security guarantees
when the protocol is composed both sequentially or in parallel into other protocols.
In this thesis we will focus on the Constructive Cryptography (CC) framework.
These guarantees are very strong, but it is usually hard to obtain general compos-
ability and some protocols are even impossible [CF01] to be proven secure in this
framework (we also derive impossibility results in this thesis).

In this thesis, most of our security proofs are stated in term of game-based security
as we also proved impossibility results regarding the CC framework. We will also use
standalone security when considering our results on Zero-Knowledge proofs on Quantum
State. We introduce now game-based security, and we will present the other models of
security in the relevant chapters (Chapters 6 and 7).

More details can be found in the tutorial of Lindell on simulation-based security [Lin17],
in the tutorial of Shoup on game-based security [Sho04] or in the generic book of Goldreich
on the foundations of cryptography [Gol01].

Game-Based Security In the game-based security framework, the definition of security
is pretty straightforward: we define a game between a challenger (playing the role of the
honest party) and a malicious adversary: a protocol is said to be secure if no adversary
can win this game with “good” probability: depending on the game, this probability may
be negligible or smaller than 1/2 + negl(λ). Depending on the targeted security,

Note that we can describe games in different ways. Either directly inlined in an
equation:

Pr
[
c̃ = c | (d(0)

0 ,d(1)
0 )← A1(1λ), c $← {0, 1}, (k, tk)← Gen(1λ,d(c)

0 ), c̃← A2(k)
]

(3.3)

55



CHAPTER 3. INTRODUCTION TO CRYPTOGRAPHY

by describing the whole interaction with the adversary:

Game1(λ)
1 : Challenger Adversary

2 : (m(0)
, m

(1)) Compute m
(0) and m

(1)

3 : c $← {0, 1}

4 : (k, tk)← Gen(1λ
, m

(c))
5 : k

6 : c̃ Guess c̃

7 : return c̃ = c

or by writting only the code of the challenger, in charge of calling the adversary seen as
an oracle:

Game1A(λ)

1 : (d(0)
0 ,d(1)

0 )← A1(1λ)
2 : c $← {0, 1}
3 : (k, tk)← Gen(1λ,d(c)

0 )
4 : c̃← A2(k)
5 : return c̃ = c

Depending on the context, we may use all these notations.
An example of a famous game is the IND-CPA game (for “Indistinguishability under

chosen-plaintext attack”, see for example [Gol04]). This game quantifies how secure is
a public-key encryption scheme (Gen, Enc, Invert), where (k, tk) ← Gen(1λ) is a PPT
algorithm that generates a public key k and a secret key tk (the t stands for “trapdoor”),
Enc is a function used to encrypt a message m into a ciphertext e using the public key k:
e← Enc(k,m), and Invert is a function used to decrypt a ciphertext e into the original
message m using the trapdoor tk: m← Invert(tk, e):

Definition 3.3.1 (IND-CPA). A public-key encryption scheme (Gen, Enc, Invert) is
said to have (quantum) indistinguishable encryption under chosen plaintext attacks if
for any QPT adversary A = (A1,A2) (again, the internal state of A1 will be implicitly
given to A2) and for any set of advices {ρλ}λ∈N,

Pr
[

IND-CPAA,{ρλ}λ
Gen (λ)

]
≤ 1

2 + negl(λ) (3.4)

where Pr
[

IND-CPAA,{ρλ}λ
Gen (λ)

]
is a shortcut for Pr

[
IND-CPAA,{ρλ}λ

Gen (λ) = true
]
, and

IND-CPA is defined as follows (note that here we only define the challenger in charge of
calling the adversary).
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IND-CPAA,{ρλ}λ
Gen (λ)

1 : (k, tk)← Gen(1λ)
2 : (m(0),m(1))← A1(k, ρλ)
3 : c $← {0, 1}
4 : c̃← A2(Enc(k,m(c)))
5 : return c̃ = c

The proofs of security in this model typically follow the same approach: we define
a series of games (Game1, . . . , Gamen) (sometimes called hybrid games) where Game1 is
our target game, and Gamen is a game impossible to win with good probability (for
instance because there is not even a single reference to the secret in the game). Then,
we prove for all i that the probability of winning Gamei is close to the probability of
winning Gamei+1 (otherwise we can use the adversary to break some hard problems: this
is known as a reduction): this gives that the probability of winning Game1 is close to the
probability of winning Gamen, and therefore that it is also impossible to win Game1 with
good probability.

While game-based security proofs are easier to write than in most other frameworks,
there are multiple problems to the game-based approach:

• If we compose a protocol secure in the game-based model with other protocols, the
resulting protocol may not be secure when used in an arbitrary environment.

• In game-based security, it can be hard to properly define the security of unusual or
complicated functionalities (like in Secure Multiparty Computing), in such a way
that covers all possible attacks. I like to explain it this way: in game-based security,
we characterize the security of a protocol in term of what is not possible to do (for
instance “it is impossible to recover the message m when m is sampled uniformly
at random”, or “it is impossible to learn the basis of the obtained |+θ⟩ state”).
But typically, it is hard to characterize all the properties that are undesirable:
for instance, a protocol leaking half of the message would also certainly not be
considered as secure, or one may also want to make sure that an adversary cannot
generate a state |+3θ⟩. We will see later that simulation-based security proceeds
differently, and characterizes instead the security in term of what is possible to do
(“it is possible to simulate the view of any attacker given only access to the size
of the message”, or “it is possible to simulate the view of the attacker given only
access to |+θ⟩”). This often naturally leads to properties that are not possible (if
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you can simulate the view knowing only the size of m, it is impossible to recover
m, and if you only have access to |+θ⟩, you cannot generate |+3θ⟩ by the laws
of quantum mechanics), and we claim that it is therefore more natural to design
simulation-based security properties than game-based security properties.

For these reasons, other models of security have been defined and will be described later
in Chapters 6 and 7.
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QFactory: Classically Faking a

Quantum Channel

“The best way of successfully acting a part is to be it.”

— Arthur Conan Doyle, The Adventure of the Dying Detective

The QFactory is a protocol we developed to classically fake a quantum chan-
nel. This modular functionality, known as Remote State Preparation (RSP) allows
a purely classical client to prepare on a remote quantum server a quantum state,

in such a way that the classical description of that state is only known to the client.
Because of its modularity, it is possible to include it in existing quantum protocols to
replace the quantum channel: we show notably in Section 4.5 how it can be composed
with the UBQC protocol to obtain blind quantum computing with a purely classical
client.

This chapter first gives in Section 4.1 a quick overview of our method, it presents then
in Section 4.2 the cryptographic assumptions required in the protocol. We present in
Section 4.3 the QFactory protocol that can produce what we call hidden GHZ states, and
describe in Section 4.4 how it is possible to obtain other classes of states. In Section 4.5 we
show the main application of QFactory which is to obtain classical-client blind quantum
computing. Finally, in Section 4.6 we explain how we can adapt our construction to
rely on a more standard security assumption, in Section 4.7 we present open questions,
and in Section 4.8 we discuss how our protocol compares with the related works. The
QFactory protocols requires a particular cryptographic family: in this chapter we will only
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base our protocol on its abstract properties, and we will see how it can be constructed
in Chapter 5.

Historical Notes. This thesis will not follow the “historical design” of QFactory:
historically we first obtained QFactory protocols that were generating one-qubit states,
and we generalized it to multi-qubit states later. However, in this thesis we will present it
in the other way: the one-qubit QFactory will be seen as a special case of the multi-qubit
QFactory. Note also that this thesis slightly improves some of our previous results (by
simplifying some gadget circuits or generalizing security proofs).

More precisely, we designed a first version of the protocol between March and July
2017 [Col17] that was producing |+θ⟩ states, but unfortunately we had no proof of
security. We only managed to prove, in the next months, a weak statement against
“honest-but-curious” adversaries [CCK+18] that I presented at QCrypt2018 (note that we
published this original paper much later [CCK+21]). We then improved both the function
construction and the protocol, and we derived a full security proof against an arbitrarily
malicious adversary [CCK+19], again for single qubit states. The generalization to multi-
qubits states (hidden GHZ) arrived later [CGK21] (note that this last paper also study
Non-Interactive Zero-Knowledge proofs on Quantum States, presented in Chapter 7).

Two independent papers [Mah18a, GV19] achieved related results: we compare these
approaches to our own result in Section 4.5 (the ground-breaking work of [Mah18a]
inspired countless other works as explained in the introduction in Chapter 1).

4.1 Intuition and Overview of QFactory

We provide now a short informal explanation of our general QFactory protocol going
through the intuition behind the protocol.

Goal. The goal is to allow a classical client Alice to prepare on a remote quantum server
Bob a multi-qubits state, in such a way that this state should be unknown to Bob but fully
describable by Alice. More precisely, the set of states that we will consider are hidden GHZ
states, which are states whose form is a permutation of Xa((|0 . . . 0⟩ ± |1 . . . 1⟩) |0 . . . 0⟩)
(dropping the normalization factor) for some a ∈ {0, 1}n. These states are named that
way since they are an extension of the Greenberger–Horne–Zeilinger (GHZ) states [GHZ89]
whose form is |0 . . . 0⟩+ |1 . . . 1⟩.
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The support of a hidden GHZ state is the set of qubits that are part of the original
GHZ state (this basically1 corresponds to the set of entangled qubits). A qubit in
the support of a hidden GHZ state is said to be supported. This set is described
by a bit string d0 ∈ {0, 1}n: the ith qubit is supported iff d0[i] = 1. For instance,
|1010⟩−|1100⟩ = |1⟩X01(|00⟩−|11⟩) |0⟩ is a hidden GHZ state whose support is d0 = 0110.
Note that for any (x, x′) ∈ ({0, 1}n)2, the state |x⟩+ |x′⟩ is always a hidden GHZ state
whose support is

{
i
∣∣∣ xi ̸= x′i

}
(this can be seen by factoring out qubits where xi = x′i).

As a consequence, we can describe the support as:

d0 = x⊕ x′ (4.1)

In the QFactory protocol, Alice will be able to choose the support d0, and Bob will
obtain a hidden GHZ state whose support is d0 without having any information on d0.

Cryptographic assumptions. In order to give some advantages to Alice over Bob,
we need to use a classical cryptographic family of functions {fk : X → Y}k∈K, together
with a function h : X → {0, 1}n having several properties. The exact list of requirements
is given in Definition 4.2.1, but here are the important ones. For any d0 ∈ {0, 1}n

(corresponding to the status of the hidden GHZ state), we can generate using a function
Gen(1λ,d0) an index k and a trapdoor tk such that:

• fk is2 2-to-1 (i.e. for all x, |f−1
k (fk(x))| = 2).

• fk can be efficiently computed given k, but should be hard to invert without tk.
Moreover, it should be hard to obtain any information on d0 given k.

• Given the trapdoor tk, fk can be efficiently inverted.
• For any x ̸= x′ such that f(x) = f(x′), h(x)⊕ h(x′) = d0.

We will say that such a family is GHZH capable (more details in Definition 4.2.1), and
we will describe how to build such a family in the Chapter 5.

GHZ-QFactory. Instead of receiving directly a quantum state, Bob will receive classical
instructions producing a quantum state in such a way that the instructions should
not leak any information on the final produced quantum state. More precisely, since
in our case we are interested in the preparation of hidden GHZ states, we proceed as
follows: Alice samples (k, tk)← Gen(1λ,d0) and sends k to Bob (which can be seen as the

1Of course, if the initial GHZ state has size 1 it does not make sense to talk about the entangled
qubits.

2Unfortunately we will see later that such family seems are impossible to obtain (as far as we know)
with post-quantum secure assumptions so we will generalize this to approximate δ-2-to-1 functions.
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instructions “encrypting” a hidden GHZ state of support d0). Then, in order to produce
the quantum state, Bob will run the unitary corresponding to x 7→ (h(x), fk(x)) on the
superposition of all inputs (if f ’s input set is {0, 1}N , this can be done by applying one
Hadamard gate per qubit, we will discuss later how to extend to more complex sets).
The state obtained by Bob will be

∑
x

|x⟩ |h(x)⟩ |fk(x)⟩ =
∑
y

(|xy⟩ |h(xy)⟩+ |x′y⟩ |h(x′y)⟩) |y⟩ (4.2)

where in the right hand side, we sum over the elements y in the image of fk, and (xy, x′y)
are the two preimages of y (reminder: the function is 2-to-1). In order to collapse
this huge superposition, Bob will measure the last register in the computational basis,
obtaining an outcome y. The remaining state will be the following (where x = xy and
x′ = x′y are the two preimages of y):

|ψ⟩ := |x⟩ |h(x)⟩+ |x′⟩ |h(x′)⟩ (4.3)

At that step, we can notice something interesting: given y and tk it is possible to compute
x and x′ and therefore it is possible to describe |ψ⟩ completely. However Bob does not
know tk and therefore cannot compute x and x′: this state is (informally) unknown to
Bob. But so far it is hard to quantify exactly which part of |ψ⟩ is known to Bob, and
we do not have yet a GHZ state whose support is d0. So Bob will now measure the first
register in the Hadamard basis to “remove” the first qubits, obtaining a state

|h(x)⟩+ (−1)α |h(x′)⟩ (4.4)

for some α ∈ {0, 1} which depends on the outcome of the measurement {bi}i. This state
is now a hidden GHZ state whose support is equal to d0: this can be seen using Eq. (4.1)
and the fact that we assumed that h(x)⊕ h(x′) = d0 for any two preimages x and x′.

It is now time to let Alice know which state was produced: Bob will then send to
Alice y and the measurements {bi}i. Using tk, Alice can invert y to obtain x, x′ and
α, which is enough to fully characterized the final hidden GHZ state obtained by Bob.
Moreover, by assumption k does not leak any information about d0, so Bob cannot learn
the support of the hidden GHZ state.

In the following sections of this chapter, we will formalize these assumptions, prove
the security of this protocol, see how it can be extended to produce other classes of states
and used (securely) inside the UBQC protocol. Note also that part of the difficulty is to
construct the family fk: this will be studied in Chapter 5.
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4.2 Function Assumptions

All the protocols are based on the existence of a (post-quantum secure) cryptographic
family of functions, which is said to be δ-GHZH capable.

Definition 4.2.1 (δ-GHZH capable functions). Let λ ∈ N be a security parameter, and
n ∈ N. We say that a family of functions {fk : Xλ → Yλ}k∈Kλ

with Xλ ⊆ {0, 1}l is
δ-GHZH capable if there exists a function h : Xλ → {0, 1}n (h could be extended to depend
on k) such that the following properties are respected:

• efficient generation: for all d0 ∈ {0, 1}n a PPT machine can efficiently sample
(k, tk)← Gen(1λ,d0) to generate (with overwhelming probability) an index k ∈ Kλ

and a trapdoor tk ∈ Tλ.
• efficient computation: for any index k, the function fk is efficiently computable

by a PPT algorithm Eval(k, x).
• trapdoor: for any trapdoor tk and any y, there exists a procedure Invert that

efficiently inverts fk when y has two preimages. More precisely, if y has exactly two
distinct preimages, we have Invert(tk, y) = f−1(y). If the number of preimages is
not 2, we expect Invert(tk, y) = ⊥.

• quantum input superposition: there exists a QPT algorithm that, on input 1λ

generates a uniform superposition ∑
x∈Xλ

|x⟩ (see Remark 4.2.2 for more details
on this assumption). Moreover, we assume that there exists l ∈ N such that
Xλ ⊆ {0, 1}l.

• δ-2-to-13: for all k ∈ K, when sampling an input x uniformly at random in Xλ,
the probability that y := fk(x) has exactly two distinct preimages (denoted by xy
and x′y or simply x and x′) is at least 1 − δ. When δ = 0, we just say that the
function is 2-to-1.

• XOR of h: for all k, there exists d0 ∈ {0, 1}n such that for all y, if y has exactly
2 distinct preimages x and x′ (i.e. f−1

k (y) = {x, x′} with x ̸= x′), then:

h(x)⊕ h(x′) = d0

Moreover, if k was obtained from Gen(1λ,d∗0), then d0 = d∗0. We will always assume
that d0 is easy to obtain from tk (it is always possible to append d0 to tk). Since,
fixing k fixes also d0, in the following we may use interchangeably d0(k), d0(tk) or
simply d0.

• indistinguishability: If the index k obtained from Gen(1λ, ·) is seen as en en-
cryption function, then—similarly to IND-CPA security—a quantum adversary

3In some of our previous work, we called these functions δ-2-regular.
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cannot learn d0 from k. More formally, if we formulate it as an indistinguishability
game IND-D0A

Gen, where A = (A1,A2) is a non-uniform QPT adversary (A1 gives
implicitly its internal state to A2), then any non-uniform QPT adversary A has
only a negligible advantage of winning the game IND-D0:

Pr
[

IND-D0A
Gen(λ)

]
≤ 1

2 + negl(λ) (4.5)

IND-D0A
Gen(λ)

1 : (d(0)
0 ,d(1)

0 )← A1(1λ)
2 : c $← {0, 1}
3 : (k, tk)← Gen(1λ,d(c)

0 )
4 : c̃← A2(k)
5 : return c̃ = c

Remark 4.2.2 (Preparation of the inputs). As explained above, it should be possible to
create a uniform superposition on Xλ, the input of fk. If Xλ = {0, 1}N , it can easily
be done by applying H⊗N on |0⟩⊗N . Otherwise, if f is only defined on a fraction (at
least constant) of {0, 1}N , and if there exists an efficiently computable indicator function
1X : {0, 1}N → {0, 1} such that 1X (x) = 1 iff x ∈ X , it is also possible to efficiently create∑

x |x⟩ using rejection sampling: First by applying H⊗N on |0⟩ we obtain ∑
x∈{0,1}N |x⟩.

Then, we apply 1X in superposition (adding one auxiliary qubit), which gives:

∑
x∈{0,1}N

|x⟩ |1X (x)⟩ = (
∑
x∈X
|x⟩ |1⟩) + (

∑
x/∈X
|x⟩ |0⟩) (4.6)

By measuring the second register, we get an outcome b: if b = 1 we have obtained the
state ∑x∈X |x⟩. Otherwise, we restart from the beginning the procedure. Note that the
probability of getting b = 0 is |X |

2N which is at most constant. Therefore by repeating it
on average around 2N

|X | times, we obtain the expected state.

We provide in Chapter 5 an explicit implementations of a δ-GHZH capable function
where δ can be made negligible if we rely on the Learning-With-Error problem with
superpolynomial noise ratio. We also show in Section 4.6 and Theorem 5.3.9 how the
protocol and construction can be adapted to polynomial noise ratio.
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4.3 Protocol for GHZ State Preparation

We describe in Protocol 2 the protocol GHZ-QFactory introduced informally in Section 4.1.

Protocol 2 GHZ-QFactory
Assumptions: There exists a negl(λ)-GHZH capable family of functions (Defini-
tion 4.2.1).
Parties: A classical client (Alice) and a quantum server (Bob).
Alice’s inputs: The support d0 of the hidden GHZ state.
Alice’s outputs: The description (d,d′, α) of the hidden GHZ state |d⟩+ (−1)α |d′⟩
obtained by Bob whose support is d0. If Bob is malicious, Alice can also abort.
Bob’s output: A hidden GHZ state |d⟩+ (−1)α |d′⟩ whose support is d0.
Protocol:

1. Alice generates (k, tk)← Gen(1λ,d0) and sends k to Bob.
2. Bob performs the following operations, also pictured in Figure 4.1:

– create the state ∑x∈Xλ
|x⟩ |h(x)⟩ |fk(x)⟩ by applying in superposition the

unitary mapping |x⟩ |0⟩ |0⟩ 7→ |x⟩ |h(x)⟩ |fk(x)⟩ on the uniform superposition
of all inputs (described in Remark 4.2.2),

– measure the third register in the computational basis, obtaining outcome y,
– measure the first register in the Hadamard basis, obtaining outcome b.

Then, Bob sends (y, b) to Alice and outputs the remaining quantum state.
3. Alice computes (x, x′)← Invert(tk, y) (or aborts if Invert(tk, y) = ⊥), d := h(x),

d′ := h(x′) and α := ⊕
i bi(xi ⊕ x′i) = ⟨b, x ⊕ x′⟩. If d = d′ and α = −1, Alice

aborts (this state is not physical, so Bob is malicious). Otherwise, Alice outputs
(d,d′, α).

Remark 4.3.1 (Note on the order of d and d′). In the protocol GHZ-QFactory, the order of
x and x′ (and therefore of d and d′) seems arbitrary. However, the order does not matter
since |d⟩ + (−1)α |d′⟩ = (−1)α(|d′⟩ + (−1)α |d⟩) (remember that α ∈ {0, 1}) which is
equal to |d′⟩+ (−1)α |d⟩ since the global phase is not observable.

Remark 4.3.2 (Note on the abort). During a run of the GHZ-QFactory, Alice can abort:
because δ is assumed to be negligible, this occurs with negligible probability if Bob is
honest. However, it is surprisingly hard to show that revealing this additional bit of
information (that we call the abort bit) does not harm the security of the protocol. For
instance, Bob may have a way to maliciously sample y in such a way that an abort
occurs if and only if, say, d0 = 0 . . . 0. Revealing the abort bit would in that case leak
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Figure 4.1: Circuit performed by the server Bob, where the superposition is created
assuming X = {0, 1}n.

information about d0. In our actual construction, it seems to be impossible to sample y
in such a way, but so far we do not have an actual proof of security in that case.

To ensure that the abort bit does not leak to Bob, Alice would therefore need to
behave exactly in the same way irrespective of whether the protocol aborted or not. One
solution would be to ask to Alice to choose a random description (d,d′, α) of a physical
hidden GHZ state whose support d⊕ d′ is d0 and to continue like if there were no abort.
This would basically be like saying that Alice sent |d⟩+ (−1)α |d′⟩ and Bob maliciously
decided to discard this state. When δ is negligible the correctness is not impacted, but
this is not the case when δ is not negligible: we will see how to mitigate this problem in
Section 4.6.

Lemma 4.3.3 (Correctness of GHZ-QFactory). At the end of an honest run of the protocol
GHZ-QFactory, with probability at least 1 − δ (which can be made overwhelming), the
state obtained by Bob is the hidden GHZ state |d⟩+ (−1)α |d′⟩ (where d,d′ and α are
the outputs of Alice) and has support d0.

Proof. First, one can easily see that the probability of measuring a y with 2 preimages is
at least 1− δ.

Indeed, before measuring the third register, Bob has the state 1√
|X |
∑
x∈X |x⟩ |h(x)⟩ |fk(x)⟩

(we added back the normalization factor). But the probability of measuring a given
y is

∣∣∣∣(I⊗ I⊗ ⟨y|)
(

1√
|X |
∑
x∈X |x⟩ |h(x)⟩ |fk(x)⟩

)∣∣∣∣2 = |f−1
k (y)|
|X | . Therefore, if we denote

by A :=
{
y
∣∣∣ |f−1

k (y)| = 2
}

the set of y having two preimages, the probability of
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measuring a y having exactly two preimages is 1
|X |
∑
y∈A |f (−1)

k (y)| = 2|A|
|X | . But this

corresponds to the fraction of x ∈ X having two preimages, which is upper bounded
by 1− δ since we assumed fk were δ-2-to-1.

Bob gets, after measuring the third register, the state ∑
x∈f−1(y) |x⟩ |h(x)⟩ on the first 2

registers. We saw that with probability 1 − δ, y has two preimages x and x′: in that
case this state can therefore be rewritten as 1√

|X |
(|x⟩ |h(x)⟩+ |x′⟩ |h(x′)⟩). Then, we saw

in Lemma 2.1.1 that for any bit string x, H⊗l |x⟩ = 1√
2l

∑
b∈{0,1}l(−1)⟨b,x⟩ |b⟩. Therefore,

after applying the Hadamard gates (preparing the measurement in the Hadamard basis),
we obtain the state:

(H⊗l ⊗ I)(|x⟩ |h(x)⟩+ |x′⟩ |h(x′)⟩) (4.7)

= 1√
|X |

∑
b∈{0,1}l

(−1)⟨b,x⟩ |b⟩ |h(x)⟩+ (−1)⟨b,x
′⟩ |b⟩ |h(x′)⟩ (4.8)

After measuring the first register, we obtain an outcome b and the second register in the
computational basis contains

(−1)⟨b,x⟩ |h(x)⟩+ (−1)⟨b,x
′⟩ |h(x′)⟩ = (−1)⟨b,x⟩(|h(x)⟩+ (−1)⟨b,x⊕x

′⟩ |h(x′)⟩) (4.9)

due to the fact that

⟨b, x⟩ − ⟨b, x′⟩ mod 2 = (⊕ibixi)⊕ (⊕ibix′i) = ⊕ibi(xi ⊕ x′i) = ⟨b, x⊕ x′⟩ (4.10)

Note that one may be worried about the fact that if d0 = 0 . . . 0, we may get d = d′

and α = −1 and therefore the state would be |d⟩ − |d⟩ = 0. . . which is not a quantum
state since it has norm 0. In an honest scenario, this is however not possible since the
probability of measuring a y leading to α = −1 is null. If Bob were malicious, this would
have been possible, hence the test.

As expected, this state is equal to |d⟩ + (−1)α |d′⟩ once we get rid of the global
phase and define d := h(x), d′ := h(x′) and α = ⟨b, x ⊕ x′⟩. Moreover, by assumption
h(x)⊕ h(x′) = d0 so the support of this hidden GHZ state is d0.

One can then wonder how to define the security of this construction. First, we
cannot say that Bob has zero information about the hidden GHZ state |d⟩+ (−1)α |d′⟩. . .
because he has this state locally. So for instance, he could just measure it, and obtain
either d or d′ (but not both of them): this is unavoidable, and present even in the
presence of a real, perfect quantum channel. However, we will see that what actually
matters for the security of the upcoming protocols is that no information should leak
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about the support d0 := d ⊕ d′ of that GHZ. For now, we define the security in the
game-based framework, but we will see in Chapter 7 a simulation-based security proof
when considering Zero-Knowledge Proofs on Quantum States.

We show now that if Bob is arbitrarily malicious, he cannot learn any information
about the support d0 of the hidden GHZ state:

Lemma 4.3.4 (Security of GHZ-QFactory). If we define the game IND-GHZ-QFactory

following the spirit of IND-CPA security, no non-uniform interactive QPT adversary
A = (A1,A2) can win IND-GHZ-QFactory with probability better than 1

2 + negl(λ).

IND-GHZ-QFactoryA
Gen(λ)

1 : (d(0)
0 ,d(1)

0 )← A1(1λ)

2 : c $← {0, 1}
3 : (k, tk)← Gen(1λ,d(c)

0 )

4 : (y, b, c̃)← A2(k)

5 : // No more interaction

6 : return c̃ = c

Proof. The structure of the protocol—with a single round of messages and a secret
support determined before the start of the protocol—allows us to have a direct link
between its security and the assumptions we made on the family {fk} (this will be
less direct for the last protocols we will consider). This is indeed a trivial reduction
to the indistinguishability property: since y and b are not used, we can remove them
without changing the probability of winning, and we get exactly the game IND-D0
(Definition 4.2.1). This game is impossible to win for probability better than 1

2 + negl(λ)
by assumption on the family {fk}, which ends the proof.

Note that we did not mention anything about what leaks about α. So far we do not
provide any guarantee about α for two reasons. First, it turns out that in the protocols
that are of interest for us, we do not need to obtain any guarantee on α. Secondly,
Bob could fool Alice and make sure that she believes that α = 0 by sending b = 0 . . . 0
(however, in that case Bob will not have the corresponding hidden GHZ). We may mitigate
this last “attack” by forbiding Bob to return a string with to few ones for b, but it would
complicate the protocol for no reasons since we never use this property.

70



4.4. PREPARING OTHER FAMILIES OF STATES

4.4 Preparing Other Families of States

In most of the protocols, we are interested in producing single-qubit states. For instance,
in the UBQC protocol we need to prepare random |+θ⟩ with θ ∈ {0, π4 , . . . , 7π

4 }. In this
section we describe how to produce different families of states. Moreover, note that
once we know how to produce |+θ⟩ states, we can use the UBQC protocol to produce
arbitrarily complicated states.

4.4.1 BB84 states

The BB84 states {|0⟩ , |1⟩ , |+⟩ , |−⟩} =
{

HB1 |B0⟩
∣∣∣ (B0, B1) ∈ {0, 1}2

}
4—whose name

comes from Bennett and Brassard who discovered the famous Quantum Key Distribution
protocol [BB84]—is the basic building block of many other protocols.

We present now a protocol BB84-QFactory preparing BB84 states, which is in fact a
particular case of the GHZ-QFactory protocol. Note that we are also interested to prepare
BB84 states since we use it as a starting point to remotely prepare |+θ⟩ states: two
runs of BB84-QFactory will be required to produce a single BB84 state [CCK+19]. In
this thesis, we will also provide a more efficient method to generate |+θ⟩ states using a
single run of QFactory, but so far we are unable to prove its security in full generality. In
any case, the construction presented in this section will also be useful in the Section 4.6
when considering δ-GHZH capable functions with a non-negligible δ (which will be the
case when we will consider constructions based on LWE with polynomial noise ratio).

We describe in Protocol 3 the protocol BB84-QFactory, prove its correctness in
Corollary 4.4.1 and its security in Lemma 4.4.3.

Corollary 4.4.1 (Correctness of BB84-QFactory). If Alice and Bob are honest, Bob gets
a BB84 state HB1 |B0⟩ with overwhelming probability and Alice outputs (B1, B0).

Proof. This is a corollary of Lemma 4.3.3. At the end of an honest run, Alice gets
|ψ⟩ := |d⟩+ (−1)α |d′⟩, with d⊕ d′ = d0 = B1. Therefore, if B1 = 0, d = d′ (and α = 1,
otherwise the protocol would have aborted) we have |ψ⟩ = |d⟩. Otherwise, d ̸= d′: since
we showed in Remark 4.3.1 that the order of d and d′ we can assume that d = 0 and
d′ = 1. Then the state is |0⟩+ (−1)α |1⟩ = H1 |α⟩, which concludes the proof.

It is now time to study the security of the protocol.
4The bit B1 will be called the basis bit since it determines if the state belongs to {|0⟩ , |1⟩} or

{|+⟩ , |−⟩}. On the other hand, B0 is called the value bit since it determines which value is encoded into
the basis fixed by B1.
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Protocol 3 BB84-QFactory
Assumptions: There exists a negl(λ)-GHZH capable family of functions (Defini-
tion 4.2.1). Moreover, we only need this construction to work for strings d0 of size
n = 1.
Parties: A classical client (Alice) and a quantum server (Bob).
Alice’s inputs: The basis B1 ∈ {0, 1} of the BB84 state (if B1 = 0, we will prepare
|0⟩ or |1⟩, otherwise we prepare |+⟩ or |−⟩).
Alice’s outputs: The description (B1, B0) of the BB84 state obtained by Bob.
Bob’s output: A BB84 state HB1 |B0⟩.
Protocol:
Run the GHZ-QFactory protocol (Protocol 2) between Alice and Bob, where Alice’s
input is a single bit d0 = B1, and the output of Alice is denoted (d,d′, α). If the
protocol aborted, Alice aborts. Otherwise, if B1 = 0 then Alice sets B0 := d and if
B1 = 1, Alice defines B0 := α. Finally, Alice outputs (B1, B0).

Remark 4.4.2. Note that in the following protocols we will always focus on the security
in term of basis blindness, meaning that no adversary can learn the basis in which the
qubit is prepared, but we do not provide much guarantee on the security of the remaining
“value bit” (denoting which of the two vectors of the basis we prepare). The reason for
that is similar to the one we gave in the Section 4.3. First, this is the only security
property that we need to obtain blind quantum computing. Secondly, we cannot prove
that no information leaks about this value bit, simply because there are leaks even in
the case of a perfect quantum channel: given the final qubit, it is always possible to
pick a random basis {|ψ1⟩ , |ψ2⟩}, measure the qubit in this basis obtaining an outcome
b, and claim that the initial qubit was not |ψ1−b⟩ (we managed to rule out one of the
outputs). By doing diagonal measurements, we could also obtain more information about
this value bit, even in the case of a perfect quantum channel.

That said, we can still claim something about the value bit in our setting: it is not
possible to have information about it without altering the output state. Indeed, if it
were possible, then we could obtain information about the basis (and we will show that
it is not possible): by picking a random basis and measuring our qubit in this basis, we
can check if the outcome is compatible with our guessed value bit. If it’s not, and if we
guessed correctly the value bit, the qubit could not have been prepared in this basis: We
have learnt information about the basis since we have ruled out one basis. Of course,
this is only a sketch of proof, but we won’t go any further since in our applications we
only need basis blindness.
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We show now that if Bob is arbitrarily malicious, he cannot learn any information
about the basis B1 of the hidden GHZ state:

Lemma 4.4.3 (Security of BB84-QFactory). If we define the game IND-BB84-QFactory

following the spirit of IND-CPA security, no non-uniform interactive QPT adversary
A = (A1,A2) can win IND-BB84-QFactory with probability better than 1

2 + negl(λ).

IND-BB84-QFactoryA
Gen(λ)

1 : (B(0)
1 , B

(0)
1 )← A1(1λ)

2 : c $← {0, 1}
3 : (k, tk)← Gen(1λ,B(c)

1 )

4 : (y, b, c̃)← A2(k)

5 : // No more interaction

6 : return c̃ = c

Proof. This is a special case of Lemma 4.3.4 where d0 is a single bit.

Remark 4.4.4 (Hiding a measurement). Note that we can turn the BB84-QFactory protocol
(that prepares a state unknown to the server) into a protocol that performs a measurement
whose basis (computational or Hadamard) is unknown to the server. Indeed, if we perform
a Bell measurement between the output of the BB84-QFactory protocol and an input
qubit, we actually perform a measurement in the computational basis on this second
qubit if B1 = 0 and a measurement in the Hadamard basis otherwise. Indeed, if the basis
of the prepared qubit is B1 = 0, we have:

B0π aπ

bπ

S= bπ (B0⊕a)π
(2.76)= (B0⊕a)π (4.11)

otherwise if B1 = 1:
B0π aπ

bπ

(2.76)=
B0π

bπ

S= (B0⊕b)π (4.12)

4.4.2 Producing |+θ⟩ (and more) from BB84-QFactory

In order to run the UBQC protocol to do blind quantum computing, we need to produce
random |+θ⟩ states with θ ∈ Zπ

4 (we will use the notation Zπ
4 := {0, π4 , . . . , 7π

4 }, and may
be pronounced 8 states when used inside protocols). In this section we explain how to
produce |+θ⟩ states from two BB84 states produced using the BB84-QFactory protocol.
We describe in Protocol 3 the protocol BB84-QFactory.
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Intuitively, what this protocol does is that it generates two BB84 states using the
protocol we just studied, and it uses a gadget circuit to combine them. More precisely,
this gadget circuit will rotate one BB84 to obtain a |+θ0⟩ state (it has only four possible
angles for now: θ ∈ {0, π2 , π, 3π

2 }), and it will entangle this state to a |+π
4
⟩ state. . . with

our second BB84 state in the middle of the entanglement. The role of this second BB84
state is to cut the entanglement when it is equal to |0⟩ or |1⟩, and preserve it otherwise
(the adversary does not know the basis of this state, so it cannot know if the entanglement
is preserved or not). Then, when measuring these two qubits in the appropriate basis,
what happens is that if the entanglement was preserved, |+π

4
⟩ will basically be teleported

on |+θ0⟩, resulting in a new state whose angle is roughly the sum of θ0 and π
4 (up to

some additional terms). On the other hand, if the entanglement was cut, π
4 will not be

added to θ0. Depending on whether we add or not π
4 to θ0, we are therefore able to reach

height possible states, with a new angle in Zπ
4 .

Note that this same idea could be extended to also produce |0⟩ or |1⟩ states (used by
some verification protocols [FK17, KW15]) by chaining another BB84 state, but we do
not need that for blind quantum computing, so we will not study it in this thesis.

Protocol 4 Zπ
4 -QFactory

Assumptions: There exists a negl(λ)-GHZH capable family of functions (Defini-
tion 4.2.1). However, we only need this construction to work for strings d0 of size
n = 1.
Parties: A classical client (Alice) and a quantum server (Bob).
Alice’s outputs: The description θ ∈ Zπ

4 of the state obtained by Bob.
Bob’s output: A quantum state |+θ⟩.
Protocol:

1. Alice randomly samples (B(0)
1 , B

(1)
1 ) $← {0, 1}2.

2. Run two times the BB84-QFactory protocol (Protocol 3) between Alice and Bob
with the inputs B(0)

1 and B
(1)
1 for the respective protocols. Bob gets two states

|in(0)⟩ = HB
(0)
1 |B(0)

0 ⟩ and |in(1)⟩ = HB
(1)
1 |B(1)

0 ⟩, and Alice has the corresponding
description (B(0)

1 , B
(0)
0 ) and (B(1)

1 , B
(1)
0 ). In case one or two runs abort, Alice

continues the protocol but randomly samples the missing B(i)
0 ’s in {0, 1}.

3. Bob runs the “gadget” circuit pictured in Figure 4.2, and sends the measurement
outcomes s1 and s2 to Alice. Bob outputs the remaining qubit.

4. Alice outputs θ where

θ := π(B(0)
0 +B

(1)
0 + s1B

(0)
1 ) + π

2 (B(1)
1 +B

(0)
1 B

(0)
0 − s2B

(0)
1 ) + π

4B
(0)
1 (4.13)
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|+π
4
⟩ s1

|in(0)⟩ Z s2

|in(1)⟩ RZ(−π2 ) H Z

Figure 4.2: Gadget circuit needed by Zπ
4 -QFactory.

Theorem 4.4.5 (Correctness of Zπ
4 -QFactory). The protocol Zπ

4 -QFactory (Protocol 4)
is correct, in the sense that if δ is negligible, with overwhelming probability Bob outputs a
state |+θ⟩ and Alice outputs θ.

Proof. First, we remark that the abort probability of one BB84-QFactory protocol is
δ = negl(λ), so the probability that one of the run aborts is negligible. If they do not
abort, then we can see that applying Rz(−π2 ) on |in⟩ = HB

(1)
1 |B(1)

0 ⟩ gives:

Rz

(−π
2

)
|in⟩ = B

(1)
1

π
2 +B

(1)
0 π (4.14)

We do two cases. If B(1)
1 = 0, then |in⟩ = B

(1)
0 π , but B

(1)
0 π 9π

2

(2.76)= B
(1)
0 π =

B
(1)
1

π
2 +B

(1)
0 π . If B(1)

1 = 1, then |in⟩ = B
(1)
0 π so

B
(1)
0 π 9π

2
S= 9π

2 B
(1)
0 π

(2.67)= π
2 B

(1)
0 π

(2.75)= (−1)B
(1)
0 π = B

(1)
0 π+ π

2 = B
(1)
1

π
2 +B

(1)
0 π

(4.15)

Therefore, HRz

(
−π
2

)
|in⟩ = B

(1)
1

π
2 +B

(1)
0 π|[zxH,]| = B

(1)
1

π
2 +B

(1)
0 π . Then, if B(0)

1 = 0,
|in(0)⟩ = |B(0)

0 ⟩, the output of the circuit is |+θa
⟩ with θa := B

(1)
1

π
2 + (B(1)

0 +B
(0)
0 )π:

π
4 s1π

B
(0)
0 π s2π

B
(1)
1

π
2 +B

(1)
0 π

CP=

π
4 s1π

B
(0)
0 π B

(0)
0 π s2π

B
(1)
1

π
2 +B

(1)
0 π

CP=
B

(0)
0 π B

(0)
0 π s2π

B
(1)
1

π
2 +B

(1)
0 π

(4.16)

H,S= B
(1)
1

π
2 +(B

(1)
0 +B

(0)
0 )π (4.17)
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Otherwise, if B(0)
1 = 1, |in(0)⟩ = H |B(0)

0 ⟩ = B
(0)
0 , and the output of the circuit is |+θb

⟩
with θb := B

(1)
1

π
2 +B

(1)
0 π + (−1)B

(0)
0 +s2 π

4 + s1π:

π
4 s1π

B
(0)
0 π s2π

B
(1)
1

π
2 +B

(1)
0 π

S=

π
4 s1π

(B
(0)
0 +s2)π

B
(1)
1

π
2 +B

(1)
0 π

H=
π
4 s1π

(B
(0)
0 +s2)π

B
(1)
1

π
2 +B

(1)
0 π

(4.18)

K= (−1)B
(0)
0 +s2 π

4
(B

(0)
0 +s2)π s1π

B
(1)
1

π
2 +B

(1)
0 π

(2.76)= (−1)B
(0)
0 +s2 π

4
s1π

B
(1)
1

π
2 +B

(1)
0 π

(4.19)

S= B
(1)
1

π
2 +B

(1)
0 π+(−1)B

(0)
0 +s2 π

4 +s1π (4.20)

To obtain a value of θ that works for both values of B(0)
1 , we can just compute:

(1−B(0)
1 )θa +B

(0)
1 θb (4.21)

= (1−B(0)
1 )(B(1)

1
π

2 + (B(0)
0 +B

(1)
0 )π) +B

(0)
1 (B(1)

1
π

2 +B
(1)
0 π + (−1)B

(0)
0 +s2

π

4 + s1π)

Using a(b+ c) + (1− a)(b+ d) = b+ ac+ (1− a)d:

= B
(1)
1
π

2 +B
(1)
0 π + (1−B(0)

1 )B(0)
0 π +B

(0)
1 (−1)B

(0)
0 +s2

π

4 +B
(0)
1 s1π (4.22)

Developing one term and using (−1)aπ/4 = π/4− aπ/2:

= B
(1)
1
π

2 +B
(1)
0 π +B

(0)
0 π −B(0)

1 B
(0)
0 π +B

(0)
1
π

4 −B
(0)
1 (B(0)

0 + s2)
π

2 +B
(0)
1 s1π (4.23)

Using −aπ − aπ/2 = aπ/2:

= B
(1)
1
π

2 +B
(1)
0 π +B

(0)
0 π +B

(0)
1 B

(0)
0
π

2 +B
(0)
1
π

4 −B
(0)
1 s2

π

2 +B
(0)
1 s1π (4.24)

Grouping:

= π(B(0)
0 +B

(1)
0 + s1B

(0)
1 ) + π

2 (B(1)
1 +B

(0)
1 B

(0)
0 − s2B

(0)
1 ) + π

4B
(0)
1 = θ (4.25)

which concludes the proof.

We study now the security of the protocol. As already discussed in Remark 4.4.2, we
are only interested in basis blindness. We show that if Bob is arbitrarily malicious, then
the protocol Zπ

4 -QFactory (Protocol 4) is basis blind, meaning that he cannot learn any
information about the basis of the state produced by the protocol:

Theorem 4.4.6 (Security of Zπ
4 -QFactory). No interactive non-uniform QPT adversary

A = (A1,A2) can win IND-Zπ
4 -QFactory with probability better than 1

4 + negl(λ).
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IND-Zπ
4 -QFactoryA(λ)

1 : (θ, θ̃π)← (Aliceλ↭ A)

2 : return θ̃π = θ mod π

where Aliceλ is the honest party of Zπ
4 -QFactory.

Proof. In order to prove the above statement, we will assume that there exists an
adversary A able to guess θ mod π with probability better than 1

4 + poly(λ), then we will
say that A is good at determining at least one bit of θ mod π, and depending on the bit
that A manages to guess correctly, we will use it to break the security of BB84-QFactory.

First, we will decompose θ = θ0π + θ1
π
2 + θ2

π
4 where (θ0, θ1, θ2) ∈ {0, 1}3 (since Alice

is honest, θ is a multiple of π
4 ), and similarly we decompose θ̃π = θ̃π,1

π
2 + θ̃π,2

π
4 . Note

that we have:

θ := π(B(0)
0 +B

(1)
0 + s1B

(0)
1 ) + π

2 (B(1)
1 +B

(0)
1 B

(0)
0 − s2B

(0)
1 ) + π

4B
(0)
1 (4.26)

using the notation from the protocol Zπ
4 -QFactory and therefore:

θ1 = B
(1)
1 ⊕B(0)

1 (B(0)
0 ⊕ s2) θ2 = B

(0)
1 (4.27)

The goal of the attacker is therefore to find the bits θ1 and θ2. Our first claim is that
A can guess either θ1, θ2 or θ1 ⊕ θ2 with probability above 1

2 + 1
poly(λ) . This is a direct

consequence of the following Lemma, by defining X = Aliceλ↭ Aλ:

Lemma 4.4.7 (Implication of guessing two predicates).
Let X be a probability distribution outputting 4 bits ((a, b), (ã, b̃)) ∈ {0, 1}2 × {0, 1}2—in-
tuitively, ã is the guess of the variable a, same for b̃—such that the probability of guessing
(a, b) is good, i.e. Pr

[
(a, b) = (ã, b̃)

]
≥ 1/4 + 1

poly(λ) . Then at least one of these properties
is true:

• a is guessed with good probability, i.e.:
P1 := Pr

[
ã = a | ((a, b), (ã, b̃))← X

]
≥ 1/2 + 1/poly(λ)

• b is guessed with good probability, i.e.:
P2 := Pr

[
b̃ = b | ((a, b), (ã, b̃))← X

]
≥ 1/2 + 1/poly(λ)

• the XOR of a and b is guessed with good probability, i.e.:
P⊕ := Pr

[
ã⊕ b̃ = a⊕ b | ((a, b), (ã, b̃))← X

]
≥ 1/2 + 1/poly(λ)

We can prove this Lemma as follows. Let us denote by:
• e1 = Pr

[
ã ̸= a and b̃ ̸= b | ((a, b), (ã, b̃))← X

]
• e2 = Pr

[
ã = a and b̃ ̸= b | ((a, b), (ã, b̃))← X

]
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• e3 = Pr
[
ã ̸= a and b̃ = b | ((a, b), (ã, b̃))← X

]
• e4 = Pr

[
ã = a and b̃ = b | ((a, b), (ã, b̃))← X

]
By assumption, we know that the probability to do a correct guess is good, i.e.
e4 ≥ 1

4 + 1
poly(λ) . Now, we assume that A is bad at guessing both a and b, i.e.

e2 + e4 ≤ 1
2 + negl(λ) and e3 + e4 ≤ 1

2 + negl(λ), and we show that A is good to
guess the XOR of aa and b. Because e4 ≥ 1

4 + 1
poly(λ) , we have e2 ≤ 1

4 − 1
poly(λ) and

e3 ≤ 1
4 − 1

poly(λ) . So e2 + e3 ≤ 1
2 − 1

poly(λ) , and because e1 + e2 + e3 + e4 = 1, we get
e1 + e4 ≥ 1

2 + 1
poly(λ) . But e1 + e4 is exactly the probability to guess the XOR, i.e.

Pr
[
ã⊕ b̃ = a⊕ b | ((a, b), (ã, b̃))← X

]
≥ 1

2 + 1
poly(λ) (4.28)

which concludes the proof of the Lemma.

We define now P1 the probability for A to guess θ1, P2 the probability of guessing θ2, P⊕
the probability of guessing θ1⊕ θ2, and Pmax = max(P1, P2, P⊕). Depending on Pmax , we
will derive now three different reductions able to break the security of BB84-QFactory.

Note that this proof is not constructive in the sense that we only say “there exists
a method to break the security of BB84” without specifying which of the three is the
appropriate one. It does not really matter in our case since we only care about security,
however someone puzzled by this non-constructive proof should be able to turn it into
a constructive proof by adding a step in which Pmax is estimated by evaluating A on
known inputs.

First case: Pmax = P2. In this case, we define the reduction from IND-BB84-QFactory
to IND-Zπ

4 -QFactory as follows, in order to obtain an adversary A′2 able to win
IND-BB84-QFactory.

Reduction Pmax = P2
(B̂(0)

1 , B̂
(1)
1 ) := (0, 1)

k
(0) := k

B
(0)
1

$← {0, 1}
(k(1)

, t
(1)
k )← Gen(1λ

, B
(0)
1 )

c̃ := θ̃π,2

A
(B(0)

1 ,B
(1)
1 )

k

c̃

(k(0)
,k

(1))

(y(0)
,y

(1)
,b

(0)
,b

(1)
,s1,s2,θ̃π)

A′2

Note that this reduction intuitively uses the fact that the π
4 component of the angle given

by the adversary is often correct (because Pmax = P2) and that when it is correct, it is
equal to the basis B(0)

1 of the first BB84 state |in(0)⟩: but this basis is supposed to be
impossible to find, so such an adversary cannot exist.
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We formalize this intuition and prove now that Pr
[

IND-BB84-QFactoryA′
2

Gen(λ)
]
≥

1
2 + 1

poly(λ) , which leads to a contradiction.

In the following, we will have probability distributions over runs of IND-Zπ
4 -QFactory

and probability distributions over runs of IND-BB84-QFactory with our adversary
A′2. To make the distinction clear, we will use the notation PrA [ · ] to denote
a probability over a run of IND-Zπ

4 -QFactory and PrR [ · ] for a probability over
IND-BB84-QFactory with our adversary A′2. We may use inside B(b)

1 to refer to the
basis encrypted into the bth message sent to A.

First, we can remark that no matters the number of preimages of y(0) and y(1),
Alice always outputs θ such that θ2 = B

(0)
1 (you can observe that the output of Alice

when an abort occurs is chosen to simplify the proof). Therefore since our reduction
with the game IND-BB84-QFactory exactly reproduces the behavior of Alice, we have:

Pr
R

[
θ̃π,2 = B

(0)
1

] (4.27)= Pr
A

[
θ̃π,2 = θ2

]
= P2 = Pmax ≥

1
2 + 1

poly(λ) (4.29)

But the reduction was chosen in such a way that B(0)
1 = B̂

(c)
1 = c and c̃ = θ̃π,2.

Therefore Eq. (4.29) can be turned into

Pr
R

[ c̃ = c ] ≥ 1
2 + 1

poly(λ) (4.30)

Hence, the probability for A′2 to win the game IND-BB84-QFactory is greater than
1
2 + 1

poly(λ) which is in contradiction with Lemma 4.4.3, so A′0 cannot exist.

Second case: Pmax = P1. In this case, we define the reduction from IND-BB84-QFactory
to IND-Zπ

4 -QFactory as follows, in order to obtain an adversary A′1 able to win
IND-BB84-QFactory when Pmax = P1.

Reduction Pmax = P2
(B̂(0)

1 , B̂
(1)
1 ) := (0, 1)

B
(1)
1

$← {0, 1}
(k(0)

, t
(0)
k )← Gen(1λ

, B
(1)
1 )

k
(1) := k

Compute B(0)
0 like Alice using t(0)

k .
c̃ := θ̃π,1 ⊕B

(0)
1 (B(0)

0 ⊕ s2)

A
(B̂(0)

1 ,B̂
(1)
1 )

k

c̃

(k(0)
,k

(1))

(y(0)
,y

(1)
,b

(0)
,b

(1)
,s1,s2,θ̃π)

A′1

Note that this reduction intuitively uses the fact that the π
2 component of the angle

given by the adversary is often correct (because Pmax = P1) and that when it is correct,
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it is equal—up to some terms that depend only on the first state that can be created
inside the reduction—to the basis B(1)

1 of the second BB84 state |in(1)⟩: but this basis
is supposed to be impossible to find, so such an adversary cannot exist.

We formalize this intuition and prove now that:

Pr
[

IND-BB84-QFactoryA′
1

Gen(λ)
]
≥ 1

2 + 1
poly(λ) (4.31)

which leads to a contradiction.
As before, we can remark that IND-BB84-QFactory and our reduction is performing
exactly the same task as Alice in IND-Zπ

4 -QFactory, so we have:

1
2 + 1

poly(λ) ≤ Pr
A

[
θ̃π,1 = θ1

] (4.27)= Pr
R

[
θ̃π,1 = B

(c)
1 ⊕B(0)

1 (B(0)
0 ⊕ s2)

]
(4.32)

where the first inequality comes from Pmax = P1. Moreover, c̃ = θ̃π,1 ⊕B(0)
1 (B(0)

0 ⊕ s2)
and B

(c)
1 = c so:

Pr
R

[ c̃ = c ] = Pr
R

[
θ̃π,1 ⊕B(0)

1 (B(0)
0 ⊕ s2) = B

(c)
1

]
(4.33)

= Pr
R

[
θ̃π,1 = B

(c)
1 ⊕B(0)

1 (B(0)
0 ⊕ s2)

]
(4.34)

(4.37)
≥ 1

2 + 1
poly(λ) (4.35)

Hence, the probability for A′1 to win the game IND-BB84-QFactory is greater than
1
2 + 1

poly(λ) which is in contradiction with Lemma 4.4.3, so A′1 cannot exist.

Third case: Pmax = P⊕. In this case, we define the reduction from IND-BB84-QFactory
to IND-Zπ

4 -QFactory as follows, in order to obtain an adversary A′⊕ able to win
IND-BB84-QFactory when Pmax = P⊕.

Reduction Pmax = P2
(B̂(0)

1 , B̂
(1)
1 ) := (0, 1)

B
(1)
1

$← {0, 1}
(k(0)

, t
(0)
k )← Gen(1λ

, B
(1)
1 )

k
(1) := k

Compute B(0)
0 like Alice using t(0)

k .
c̃ := θ̃π,1 ⊕B

(0)
1 (B(0)

0 ⊕ s2)⊕B(0)
1

A
(B̂(0)

1 ,B̂
(1)
1 )

k

c̃

(k(0)
,k

(1))

(y(0)
,y

(1)
,b

(0)
,b

(1)
,s1,s2,θ̃π)

A′⊕

Note that this reduction intuitively uses the fact that the π
2 ⊕ π

4 component of the angle
given by the adversary is often correct (because Pmax = P⊕) and that when it is correct,
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it is equal—up to some terms that depend only on the first state that can be created
inside the reduction—to the basis B(1)

1 of the second BB84 state |in(1)⟩, nearly exactly
like in the second case. Because this basis is supposed to be impossible to find, so such
an adversary cannot exist.

We can prove, using a proof very similar to the second case that

Pr
[

IND-BB84-QFactoryA′
1

Gen(λ)
]
≥ 1

2 + 1
poly(λ) (4.36)

leading to a contradiction.

As before, we can remark that IND-BB84-QFactory and our reduction is performing
exactly the same task as Alice in IND-Zπ

4 -QFactory, so we have:

1
2 + 1

poly(λ) (4.37)

≤ Pr
A

[
θ̃π,1 ⊕ θ̃π,2 = θ1 ⊕ θ2

] (4.27)= Pr
R

[
θ̃π,1 = B

(c)
1 ⊕B(0)

1 (B(0)
0 ⊕ s2)⊕B(0)

1

]

where the first inequality comes from Pmax = P⊕. Moreover, c̃ = θ̃π,1 ⊕ B(0)
1 (B(0)

0 ⊕
s2)⊕B(0)

1 and B
(c)
1 = c so:

Pr
R

[ c̃ = c ] = Pr
R

[
θ̃π,1 ⊕B(0)

1 (B(0)
0 ⊕ s2)⊕B(0)

1 = B
(c)
1

]
(4.38)

= Pr
R

[
θ̃π,1 = B

(c)
1 ⊕B(0)

1 (B(0)
0 ⊕ s2)⊕B(0)

1

]
(4.39)

(4.37)
≥ 1

2 + 1
poly(λ) (4.40)

Hence, the probability for A′⊕ to win the game IND-BB84-QFactory is greater than
1
2 + 1

poly(λ) which is in contradiction with Lemma 4.4.3, so A′⊕ cannot exist.

We have therefore covered all three cases: all of them lead to a contradiction, confirming
that there exist no adversary A able to break the game IND-Zπ

4 -QFactory, which
concludes the proof..

We have therefore saw a method to prepare |+θ⟩ states using classical communication
without revealing to the server the basis θ mod π of θ. This turns out to be enough to
run the UBQC protocol as we will see in Section 4.5, allowing us to create arbitrarily
complicated states.
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4.5 Application to Classical-Client Blind Quantum
Computing

One of the main application of the QFactory protocols is classical-client blind quantum
computing. While we will show in Chapter 6 that classical-client UBQC (UBQCCC)
protocols cannot be proven secure in a fully composable setting, there is hope that it
remains possible with a weaker definition of security. And indeed, in this section we show
that UBQCCC is possible in the game-based setting by combining the UBQC protocol
([BFK09], see details in Section 2.3.7) with our protocol Zπ

4 -QFactory. We first give in
Protocol 5 the definition of the UBQCCC protocol, then we define and prove its security.

Protocol 5 UBQCCC: Classical Blind Quantum Computing
Requirements: There exists a classical-client Remote State Preparation protocol
Zπ

4 − RSPCC producing |+θ⟩ states with θ ∈ Zπ
4 with overwhelming probability dur-

ing an honest run. Moreover, this protocol should be basis-blind in the sense of
IND-Zπ

4 -QFactory (this is the case of our protocol Zπ
4 -QFactory whose security is

proven in Theorem 4.4.6).
Parties: A classical client (Alice) and a quantum server (Bob).
Alice’s inputs: A circuit—where inputs are hardcoded and all output qubits will
be measured in the computational basis—represented as a MBQC pattern where we
denote by {ϕi}i∈[n] the set of measurement angles on the graph G. This pattern can
be obtained using for instance the brickwork construction described in Section 2.3.6.
Alice’s outputs: The measurement outcomes of the circuit.
Protocol:

1. Alice and Bob run n different instances of Zπ
4 − RSPCC (in parallel) to obtain

{θi}i∈[n] on Alice’s side and {|+θi
⟩}i∈[n] on Bob’s side, where for all i, θi ← Zπ

4 .
2. Alice and Bob run the UBQC protocol (Definition 2.3.4), except that Bob uses

the |+θi
⟩ obtained at the previous step. Alice forwards the output.

Definition 4.5.1 (Blindness of UBQCCC). A classical-client UBQC protocol π = (πA, πB)
is said to be (computationally) blind if no computationally bounded malicious server can
distinguish between runs of the protocol with adversarially chosen circuits (i.e. the angle
of the measurement pattern on the MBQC graph).

In formal terms, π is said to be (computationally) blind if and only if no interactive
QPT adversary A can win the game IND-UBQCcc with probability better then 1/2+negl(λ),
where the size of the pattern has polynomial size in λ:

Pr
[

IND-UBQCcc
A(λ)

]
≤ 1

2 + negl(λ)
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IND-UBQCA
cc(λ)

1 : (ϕ(1), ϕ(2))← A
2 : c $← {0, 1}
3 : // For brevity we omit the rest of the pattern which is fixed.

4 : πA(ϕ(c))↭ A
5 : c̃← A
6 : return c = c̃

We prove now that protocol UBQCCC allows secure classical-client blind quantum
computing.

Theorem 4.5.2 (Game-based Blindness of UBQCCC). The protocol UBQCCC (instantiated
with any Zπ

4 − RSPCC protocol fulfilling the requirements of the protocol, which includes
our Zπ

4 -QFactory protocol) is blind according to the definition Definition 4.5.1.

Proof. The proof of Theorem 4.5.2 which will be given in the remainder of this section
follows three main ideas:

1. First, we proceed by an induction on the size of the graph G. At every step, we will
be able to show that the last round of communication does not bring a significant
advantage to the adversary, allowing us to remove it. That way, we derive a series
of games with similar winning probabilities, in such a way that the last game ends
up to contain no communication at all with the adversary. . . and that is therefore
trivially secure.

2. Secondly, in order to remove one round of communication, we first realize that the
one-time pad r in UBQC hides all potential leakages on the value bit of the pattern
angles. Therefore, the adversary can only learn information about the basis of the
computation.

3. Lastly, it is fortunately also impossible to learn any information about the basis
of the pattern angles, or we could use this information to find the basis of the
underlying Zπ

4 − RSPCC protocol. . . which is supposed to be impossible since this
protocol is basis-blind by assumption.

More formally, we define for any j ∈ {0, . . . , n} the following games Gamej and Gamej′.
First, Gamej is basically like IND-UBQCcc except that we stop the protocol after j rounds:
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GamejA

Challenger Adversary

1 : c $← {0, 1}, ∀i, ϕi := ϕ
(c)
i

ϕ
(1)

, ϕ
(2)

Choose ϕ
(1)

, ϕ
(2) ∈ Zπ

4
2 : Run n Zπ

4 − RSPCC (as Alice) to obtain {θi}i∈[n]
Zπ

4 − RSPCC

3 : δ1 = (−1)f1(... )
ϕ1 + r1π + θ1 + f2(. . . )π δ1

4 : s1

5 :
...

6 : δj = (−1)f1(... )
ϕj + rjπ + θj + f2(. . . )π δj

7 : return c̃ = c
sj , c̃

And Gamej′ is exacly like Gamej, except that we add a dummy round at the end
where δj+1 is sampled uniformly at random.

Gamej′A

Challenger Adversary

1 : c $← {0, 1}, ∀i, ϕi := ϕ
(c)
i

ϕ
(1)

, ϕ
(2)

Choose ϕ
(1)

, ϕ
(2) ∈ Zπ

4
2 : Run n Zπ

4 − RSPCC (as Alice) to obtain {θi}i∈[n]
Zπ

4 − RSPCC

3 : δ1 = (−1)f1(... )
ϕ1 + r1π + θ1 + f2(. . . )π δ1

4 : s1

5 :
...

6 : δj = (−1)f1(... )
ϕj + rjπ + θj + f2(. . . )π δj

7 : sj

8 : δj+1
$← {0,

π

4 ,
π

2 ,
3π

4 }
δj

9 : return c̃ = c
sj+1, c̃

Clearly, for any j, the best probability of winning these games is the same:

sup
QPTA

Pr
[

GamejA ] = sup
QPTA

Pr
[

Gamej′A
]

(4.41)

Indeed, we can easily turn any adversary winning one game into an adversary winning the
other game by removing/sampling δn+1 since it does not depend on any secret. Now, we
prove that for any j ∈ [n− 1], supQPTA Pr

[
Gamej+1A ] ≤ supQPTA Pr

[
Gamej′A

]
+ negl.

To that end, let A be a QPT adversary of Gamej′, and let us prove that there exists
a QPT adversary A′ such that Pr [ Gamej+1 ]A ≤ Pr

[
Gamej′

]A′

+ negl. First, if
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Pr [ Gamej+1 ]A ≤ Pr
[

Gamej′
]A

+negl, we just take A = A′. Otherwise, let us assume
that:

Pr [ Gamej+1 ]A ≥ Pr [ Gamej ]′A + 1
poly(λ) (4.42)

We will prove that this is impossible, otherwise we could use A to attack the game
IND-Zπ

4 -QFactory with probability 1
2 + 1

poly(λ) (which is assumed to be impossible).
To that end, we proceed by reduction and create an adversary A2 from A as

described in Figure 4.3 (we can imagine that A2 is allowed to use the code of A
internally, represented with communications between A2 and A).

Reduction
Challenger Adversary A2 A′

1 : c $← {0, 1}, ∀i, ϕi := ϕ
(c)
i

ϕ
(1)

, ϕ
(2)

2 : Run j Zπ

4 − RSPCC to get {θi}i∈[j]
Zπ

4 − RSPCC

3 : Run Zπ

4 − RSPCC gives θ
Zπ

4 − RSPCC
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

4 : Run n− j Zπ

4 − RSPCC→ {θi}i∈[n]\[j+1]
Zπ

4 − RSPCC

5 : r $← {0, 1}n

6 : δ1 = (−1)f1(... )
ϕ1 + r1π + θ1 + f2(. . . )π δ1

7 :
... s1

8 : δj = (−1)f1(... )
ϕj + rjπ + θj + f2(. . . )π δj

9 : sj

10 : θ̃π
$← {0,

π

4 ,
π

2 ,
3π

4 }, rj+1
$← {0, 1}

11 : δj+1 := (−1)f1(... )
ϕ

(c)
i + θ̃π + rj+1π

δj+1

12 : if c̃ = c then θ̃g := θ̃π
sj+1, c̃

13 : θ̃g
?= θ mod π else θ̃g

$← {0,
π

4 ,
π

2 ,
3π

4 }

Figure 4.3: Reduction.

We compute now Pr
[
θ̃g = θ mod π

]
, which is the probability of winning the game

IND-Zπ
4 -QFactory (all probabilities will be expressed in term of a run of the game

IND-Zπ
4 -QFactory with the adversary A2). In the following, we use the notation

θπ := θ mod π. Now, we will derive a few properties on the distribution of the variable
involved in this game in order to derive a probability tree (picture in Figure 4.4)
describing the probability of winning IND-Zπ

4 -QFactory.
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θ̃π
?= θπ

c̃ ?= c

θ̃g
?= θπ θ̃g

?= θπ

c̃ ?= c

θ̃g
?= θπ θ̃g

?= θπ

1
4

a

1

1− a

1
4

3
4

3
4

b

1

1− b

1
4

3
4

Figure 4.4: Probability tree denoting when the adversary A2 wins the game,
i.e. when θ̃g = θπ. The nodes represent the event (conditioned on the above
events in the tree), the left branch represents the probability for this event to
be true (the probability is written next to the branch), and the right branch
represents the probability for this event to be false. At the leaves of the tree
lies an happy face when A2 wins the game and a sad face otherwise.

First, we can remark that since θ̃π is sampled independent of θ, we have:

Pr
[
θ̃π = θπ

]
= 1

4 (4.43)

Then, when θ̃π = θπ the setting is equivalent to the Gamej+1 game.

The reason is that the last angle δj+1 sent in Gamej+1 has the form δj+1 = α+rj+1π.
Because rj+1 is sampled uniformly at random and used only once, it completely
one-time pads the value bit of α: said differently, the distribution α + rj+1π is
exactly the same as the distribution απ + rj+1π, with απ := α mod π. Moreover,
when θ̃π = θπ, δj+1 mod π has exactly the value we would have obtained in the
game Gamej+1.

Therefore, according to Eq. (4.42), we have:

a := Pr
[
c̃ = c | θ̃π = θπ

]
= Pr

[
Gamej+1A ] ≥ Pr

[
Gamej′A

]
+ 1

poly(λ) (4.44)

Then, we also remark that θ̃π is sampled uniformly at random and so is rj+1. Since
δj+1 is the last message sent to A and is defined as a sum of δj+1 = α+ θ̃π + rj+1π for
some α, its distribution is completely uniform for A. Therefore, we are exactly in the
setting of Gamej′ and therefore:

d := Pr [ c̃ = c ] = Pr
[

Gamej′A
]

(4.45)
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This is helpful to determine b := Pr
[
c̃ = c | θ̃π ̸= θπ

]
since

d = Pr [ c̃ = c ] (4.46)
= Pr

[
θ̃π = θπ

]
Pr
[
c̃ = c | θ̃π = θπ

]
+ Pr

[
θ̃π ̸= θπ

]
Pr
[
c̃ = c | θ̃π ̸= θπ

]
(4.47)

(4.43)= 1
4a+ 3

4b (4.48)

we have

b = 4
3(d− 1

4a) = 4
3d−

1
3a (4.49)

Finally, we can remark that due to the way A2 samples θ̃g, we have:

Pr
[
θ̃g = θ̃π | c̃ = c

]
= 1 (4.50)

Pr
[
θ̃g = θ̃π | c̃ ̸= c

]
= 1

4 (4.51)

Combining all these probabilities together (following the tree drawn in Figure 4.4), we
obtain that the probability of winning the game IND-Zπ

4 -QFactory is:

Pr
[
θ̃g = θπ

]
= 1

4a+ 1
4(1− a)1

4 + 3
4(1− b)1

4 (4.52)

= 1
4a+ 1

16 −
1
16a+ 3

16 −
3
16b (4.53)

= 1
4 + 3

16(a− b) (4.54)

But b (4.49)= 4
3d− 1

3a so

a− b = a+ 1
3a−

4
3d = 4

3(a− d) (4.44)= 4
3
(
Pr
[

Gamej+1A ]− Pr
[

Gamej′A
])

(4.55)
(4.42)
≥ 1

poly(λ) (4.56)

Therefore combining this with Eq. (4.54) gives a probability of winning the game
IND-Zπ

4 -QFactory greater than 1
4 + 1

poly(λ) , which is supposed to be impossible.

It is now easy to conclude by induction since we have:

sup
QPTA

Pr
[

IND-UBQCcc
A ] = sup

QPTA
Pr
[

GamenA ] ≤ sup
QPTA

Pr
[

Gamen-1′A
]

+ negl(λ) (4.57)

= sup
QPTA

Pr
[

Gamen-1A ]+ negl(λ) ≤ . . . (4.58)

≤ sup
QPTA

Pr
[

Game0A ]+ negl(λ) (4.59)
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However, in the game Game0 no message linked with the secret are sent to the ad-
versary, therefore no adversary can win this game with probability better than 1

2 , i.e.
supQPTA Pr

[
Game0A ] = 1

2 . Because there is only a polynomial number of steps, we have
therefore

sup
QPTA

Pr
[

IND-UBQCcc
A ] ≤ 1

2 + negl(λ) (4.60)

which concludes the proof.

4.6 Non-Negligible δ: Treating the Abort Case

4.6.1 Why Abort is Important

In this section, we will discuss an extension of BB84-QFactory (used internally in Zπ
4 -

QFactory), whose aim is to achieve basis blindness when the δ-GHZH capable family has
a non-negligible δ (our proof also works when δ is a constant). This occurs notably when
we rely on the hardness assumption of LWE with polynomial noise ratio (see Remark 5.3.8
why this assumption may make sense) as we will see in Theorem 5.3.9.

The problem of the current BB84-QFactory protocol is that when y has not exactly 2
preimages—which occurs with probability 1− δ when the server is honest—the protocol
will abort. There are then multiple possible strategies to deal with this abort.

A first method is to just behave as if the protocol had not aborted by randomly
choosing the output of the protocol as done in the Zπ

4 -QFactory protocol. In that case,
of course, the protocol is not correct anymore. When δ is negligible, this is not really an
issue: this occurs with negligible probability when the server is honest. But when δ is
not negligible, it means that the protocol is not correct anymore. . . which is obviously
an issue.

An alternative approach is to reveal to the server that the protocol aborted, and to
restart the protocol from scratch. Unfortunately, it is then hard to prove the security in
that later case as this abort bit (i.e. whether we aborted or not) can potentially leak a
lot of information about the basis. For instance, let us imagine that the server has a way
to maliciously sample y in such a way that y has 2 preimages if and only if the basis is
the computational basis (a-priori, this does not contradict any of the assumptions on fk).
Then the server will always abort when the state is in the Hadamard state, effectively
producing only qubits in the computational basis. . . The protocol is completely insecure!
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Of course, it may be impossible to sample y in such a malicious way (and with our
current construction we found no obvious flow occurring when leaking the abort bit).
But so far we have no proof of security.

4.6.2 A Quick Overview of Our Approach

In this section we propose a third alternative. While the protocol is given in Protocol 6,
we provide now a quick overview of the method and of the proof of security.

The rough idea of our method is to run t BB84-QFactory protocols between Alice
and Bob and exploit the fact that when the protocol aborts because there is a single
preimage5, the state obtained by Bob is not completely useless: it is a state in the
computational basis (we have no superposition when there is a single pre-image, therefore
we are left with either |0⟩ or |1⟩ as proven in Lemma 4.6.2. Note that we will denote by
0 the computational basis and by 1 the Hadamard basis). Having that remark in mind,
we combine on Bob’s side all these runs (including the runs that aborted) using a gadget
circuit in order to obtain a new qubit. This qubit will be such that its basis is the XOR
of the basis of all the input qubits as proven in Lemma 4.6.3 (which also corresponds to
the XOR of the basis of the accepted runs since during an abort the basis is 0). Then,
Alice will divide the runs in c chunks of size tc (this is required for the proof of security)
and check that the number of accepted runs in each chunk is high enough (the fraction
must notably be greater than 1/2 to avoid the aforementioned attack: this will happen
with overwhelming probability if Bob is honest and δ > 1/2). If this is the case, Alice
will just output the description of the final qubit (whose basis is the XOR of the basis of
the accepted run), and otherwise (i.e. if the server is malicious), she will just outputs a
random bit value.

Intuitively, the security holds because for a given chunk i ∈ [c], Bob cannot fully
learn bi, the XOR of the basis of all the runs in that chunk (this is formalized and proven
in Lemma 4.6.7). Moreover, we also want to say that if Bob does not really know b0,
nor b1, nor b2. . . then he has negligible information on ⊕i∈[c]bi. This property is known
as privacy amplification, and the Yao’s XOR Lemma is a theorem that can be used to
prove this kind of statements. Unfortunately, the original theorem does not apply to our
setting: this lemma as been proven in the classical case and there were no interaction
(see [GNW98] for a review of this theorem as well as the main proof methods). Some
works [VW07] also extended this lemma to protocols, and also to the quantum setting

5In our fuuntion construction we will have at most 2 preimages, so this occurs with probability δ
during an honest run.
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[She12, KŠdW07], but unfortunately these last works focus mostly on communication
and query complexity, and are not really usable in our case. As a consequence, we need
to conjecture that this theorem also applies to quantum interactive protocols.

In the following, we will call “accepted run” a run of BB84-QFactory such that the
received y from the server has 2 preimages (“probability of success” also refers to the
probability of this event when the server is honest), and otherwise we call it an “aborted
run” (we assume that fk can have at most 2 preimages).

We will also discuss other methods that could help us to avoid this assumption and
to improve the efficiency of the protocol in Section 4.7.

4.6.3 Correctness and security of non-negl-BB84-QFactory

Now, we will formalize and prove the previous statements. First, we state the conjecture
on which we will build our further results, itself based on the Yao’s XOR Lemma
described notably in the review of Goldreich [GNW98]. This review presents notably the
proof of Levin [Lev87] and Impagliazzo [Imp95b] (see also [She12, KŠdW07, VW07] for
extensions).

The original lemma is roughly stated as follows (the exact formulation is more general):
if x ∈ X is sampled according to some distributions χ, if P : X → {0, 1} is a potentially
not efficiently computable randomized predicate, and if no classical efficient randomized
algorithm can guess P (x) given x with a probability greater than 1− δ where δ ∈ (0, 1

2 ] is
a constant6, then no classical efficient randomized algorithm can guess ⊕i∈[t]P (xi) given
(x1, . . . , xt) $← χt with non-negligible (in λ and t(λ)) advantage over a random guess.

Typically, x is the result of the evaluation of a one-way function f on a random input,
and P (x) first (inefficiently) inverts f before computing a predicate on these preimages.
Unfortunately, in our case P depends not only on the preimages, but also on the output
of the adversary (the abort bit). Therefore, we need an extension of this lemma where
the predicate depends on the output of the adversary. Note that we state here a version
in which the rounds are processed in parallel for simplicity, but we could also adapt our
proof for a version in which the rounds are processed sequentially.

Conjecture 4.6.1 (Yao’s XOR Lemma for one-round protocols (classical messages)
against quantum adversary).
Let λ be the security parameter, let Pλ : Kλ×Yλ → {0, 1} be a (possibly non-deterministic)
family of functions (usually not computable in polynomial time), and let χλ be a distribu-

6δ can also be chosen as δ ≥ 1
poly(λ) but t needs to scale appropriately.
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tion on Kλ efficiently samplable. If there exists δ(λ)—intuitively the probability of failing
to guess one round—such that |δ(λ)| ≥ 1

poly(λ) and such that for any polynomial (in λ)
quantum adversary Aλ : Kλ → Yλ × {0, 1},

Pr
[
β̃ = Pλ(k, y) | (y, β̃)← Aλ(k), k ← χλ

]
≤ 1− δ(λ)

then, for all t ∈ N>0, there is no polynomial quantum adversaries A′λ : Kt
λ → Y t

λ×{0, 1}
such that:

Pr
[
β̃ =

t⊕
i=1

Pλ(ki, yi) | (y1, . . . , yt, β̃)← A′λ(k1, . . . , kt),∀i, ki ← χλ

]

≥ 1
2 + (1− δ(λ))t + negl(λ)

Lemma 4.6.2 (Aborted runs are useful). If fk has at most two preimages, if Alice and
Bob are following the BB84-QFactory protocol honestly, and if y has not 2 preimages,
then the output qubit produced by Bob is in the basis {|0⟩ , |1⟩}.

Proof. The function fk cannot have more than two preimages by assumption, and in the
BB84-QFactory protocol the output y is in the image of fk. So y has exactly one preimage x.
Therefore, after measuring the last register, the states will be |x⟩⊗|h(x)⟩⊗|y⟩. The qubit
in the second register (|h(x)⟩) is in the computational basis and is not entangled with the
first register: after measuring the first register, the second register stays untouched.

...

|in(1)⟩ H s(1)

|in(2)⟩ H s(2)

...

|in(t)⟩ H s(t)

|+⟩ Z Z Z H Rz(π/2) |out⟩

Figure 4.5: The XOR gadget circuit Gad⊕ (run on server side). Note that the rightmost
Hadamard and rotation on the last wire is only used to bring a |+θ⟩ back into a BB84
state. When using other protocols that actually expect |+θ⟩ states (the first step of the
Zπ

4 -QFactory protocol undoes this operation) we can remove them. We see that this
circuit has been simplified since the our original publication (thanks ZX-calculus).
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Lemma 4.6.3 (Gadget circuit Gad⊕ computes XOR). If we denote by B
(i)
1 the basis

of |in(i)⟩ = HB
(i)
1 |B(i)

0 ⟩ (equal to 0 if the basis is computational and 1 if the basis is
Hadamard), and if we run the circuit Gad⊕ represented Figure 4.5 on these inputs, then
the basis of |out⟩ is equal to ⊕ti=1B

(i)
1 .

Proof. First, as shown in Eq. (4.14), applying Rz(−π2 ) on |in(i)⟩ = HB
(i)
1 |B(i)

0 ⟩ gives:

Rz

(−π
2

)
|in(i)⟩ = B

(i)
1

π
2 +B

(i)
0 π (4.61)

Therefore, the above circuits can be rewritten as:

B
(1)
1

π
2 +B

(1)
0 π s

(1)
π

B
(2)
1

π
2 +B

(2)
0 π s

(2)
π

...
B

(t)
1

π
2 +B

(t)
0 π s

(t)
π

π
2

S=

B
(1)
1

π
2 +B

(1)
0 π s

(1)
π

B
(2)
1

π
2 +B

(2)
0 π s

(2)
π

...
B

(t)
1

π
2 +B

(t)
0 π s

(t)
π

π
2

(4.62)

(2.75)=

(−1)s
(1)

B
(1)
1

π
2 +B

(1)
0 π

(−1)s
(2)

B
(2)
1

π
2 +B

(2)
0 π

...
(−1)s

(t)
B

(t)
1

π
2 +B

(t)
0 π

π
2

(4.63)

H,S= ∑
i
(−1)s

(i)
B

(i)
1

π
2 +B

(i)
0 π

π
2 (4.64)

S= ∑
i
(−1)s

(i)
B

(i)
1

π
2 +B

(i)
0 π

π
2 (4.65)

By using now Eq. (4.61) in the reverse order, we can conclude that we obtain a BB84
state whose basis is:

∑
i

(−1)s
(i)
B

(i)
1
π

2 +B
(i)
0 π mod π = ⊕iB(i)

1 (4.66)

which concludes the proof.

We describe now in Protocol 6 the protocol non-negl-BB84-QFactory.

Lemma 4.6.4 (Probability of correctness of non-negl-BB84-QFactory for one chunk). If
the probability to have an accepted run in BB84-QFactory with honest parties is greater
than a constant pa > 1/2, i.e.

Pr[|f−1
k (y)| = 2 | AliceBB↭ BobBB] ≥ pa
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Protocol 6 non-negl-BB84-QFactory
Assumptions: There exists a δ-GHZH capable family of functions (Definition 4.2.1)
for n = 1 with δ < 1/2, such that fk has at most 2 preimages for any y and such that
the trapdoor tk allows the complete inversion of fk for any y. For the security, we also
assume the Conjecture 4.6.1.
Parameters: We use some constants in the protocol: nc is the number of chunks,
tc ∈ N is the number of repetitions per chunk, t = nc × tc is the total number of
repetitions, pa ∈ (1/2, 1] > 1 − δ is a lower bound on the probability of accepting,
and pc ∈ (1/2, 1] < pa is the fractions of the runs per chunk that must be accepted.
These constants can be chosen to have overwhelming probability of success for honest
players, and negligible advantage for a malicious adversaries trying to guess the basis
(assuming our conjecture).
Parties: A classical client (Alice) and a quantum server (Bob).
Alice’s outputs: The description B0, B1 of a BB84 state whose basis is B1.
Bob’s output: A BB84 state HB1 |B0⟩.
Protocol:

1. Alice runs nc × tc times the BB84-QFactory protocol—except that Alice does
not abort if there is less than 2 preimages—in order to obtain the description
{(B(i,j)

0 , B
(i,j)
1 )} of the produced BB84 states (in (i, j), i corresponds to the

chunk number and j to the index in the chunk i). She also defines a(i,j) = 0 if
the protocol aborted and a(i,j) = 1 otherwise. If there is a single preimage she
computes B(i,j)

1 := 0 and B(i,j)
0 = h(f−1(y(i,j))). If there is no preimage (it clearly

means that the server is cheating), she just outputs a random value for both B0
and B1.

2. Bob runs the circuit Figure 4.5 on the t outputs of the previous run and outputs
|out⟩.

3. Alice checks that for all chunks i ∈ [nc] the number of accepted runs is high
enough, i.e. that ∑j a

(i,j) ≥ pctc.
• If at least one chunk does not respect this condition, Alice picks two ran-

dom bits B1 (the basis bit) and B0 (the value bit) and outputs (B1, B0),
corresponding to the description of the BB84 state HB1 |B0⟩.

• If all chunks respect this condition, then she sets B1 := ⊕
i,j B

(i,j)
1 (the final

basis is the XOR of all the basis), and B0 will be chosen to match the output
of Figure 4.5.

(where AliceBB and BobBB are the honest parties in the BB84-QFactory protocol) then the
probability to have at least pbtc accepted runs (with pb < pa, pb considered as a constant)
is exponentially (in tc) close to 1:

Pr
[∑

i

ai ≥ pbtc | (Alicetc1⊕∥Bobtc1⊕)
]
≥ 1− 1

e2(pa−pb)2
tc

= 1− negl(tc)
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(where Alicetc1⊕ and Bobtc1⊕ are the (honest) parties of the Protocol 6 restricted on one
chunk of size tc)

Proof. In the honest case, all runs are independents, so let us define {Ai}ti=1 as the
(binary) random variables whose values are 1 iff the i-th run has two preimages associated
with yi. We know that for all i, E(Ai) ≥ pa > pb. So let us define ε = E(Ai)−pb > pa−pb.
Using Chernoff inequality we have

Pr
[

1
t

t∑
i=1

Ai < E(Ai)− ε
]
≤ e−2ε2

t ≤ e−2(pa−pb)2
t = negl(t)

(because pa − pb is constant)

Lemma 4.6.5 (Correctness of Protocol 6). The Protocol 6 is correct with overwhelming
probability as soon as t = poly(λ) and tc = Ω(λ), i.e.

Pr
[
|out⟩ = HB1ZB2 | ((B1, B2), |out⟩)← (πA∥πB)

]
≥ 1− negl(λ)

Proof. The Lemma 4.6.4 gives that the probability to have more than pctc accepted runs
for a given chunk is 1 − negl(tc), i.e. if tc = Ω(λ), this probability is negl(λ). So for
nc chunks, the probability to have one fail is (1 − negl(λ))nc = 1 − negl(λ) as soon as
nc = poly(λ), which is the case because t = tc× nc = poly(λ). Then, when all the chunks
are accepted, the correctness of the output values is assured by Lemma 4.6.3.

Definition 4.6.6. For any public key k and image y, we define a(k, y) = 1 iff |f−1
k (y)| = 2,

and a(k, y) = 0 otherwise.
Then, for all tc ∈ N and pc ∈ [0, 1], we define βtc,pc

(k(1), . . . , k(tc), y(1), . . . , y(tc)) as
the (randomized) function that outputs a random bit if ∑i a(k(i), y(i)) < pc · tc, and
outputs otherwise ⊕i(a(k(i), y(i)) · d(i)

0 ), where d(i)
0 is the hardcore bit corresponding to

k(i) := (K(i), g
K

(i)(z(i)
0 )), i.e. d(i)

0 = h(z(i)
0 ).

Lemma 4.6.7 (Solving one chunk is difficult). Let pc ∈ (1
2 , 1]. Then, there exists no

polynomial adversary A such that:

Pr
[
B̃1 = βtc,pc

(k(1), . . . , k(tc), y(1), . . . , y(tc))

| ∀i, d(i)
0

$← {0, 1}, k(i) ← Gen(1λ, d(i)
0 ), (y(1), . . . , y(tc), B̃1)← A(k(1), . . . , k(tc))

]
> η

with βtc,pc
is the basis computed by Alice for a single chunk in the non-negl-BB84-QFactory

protocol—potentially random if too many aborts are present—η = 1
2

(
1 + 1

2pc

)
, where the

randomness is over the randomness of β, A, and over the choice of (k(i))i and (d(i)
0 )i.
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Proof. By contradiction, let us assume that there is an adversary A such that (we omit
the parameters for readability)

Pr
[
B̃1 = β

]
> η

Then, if we define the abort bit ai := a(k(i), y(i)),

η < Pr
[
B̃1 = β

]
= Pr

[∑
i

ai < pctc

]
︸ ︷︷ ︸

α

×1
2 + Pr

[∑
i

ai ≥ pctc

]
× Pr

[
B̃1 = β |

∑
i

ai ≥ pctc

]

= α× 1
2 + (1− α)× Pr

[
B̃1 = β |

∑
i

ai ≥ pctc

]

≤ α× 1
2 + (1− α) = 1− α

2

so α ≤ 2(1− η).
Now, we remark that we can bound also (1− a)×Pr

[
B̃1 = β | ∑i ai ≥ pctc

]
. Indeed,

if this value is too big then we can construct an adversary that could break the hardcore
bit property of gK . To do that, we define an adversary A′ taking as input a k, and
whose goal is to find the hardcore bit d0 associated with k. This adversary will pick
tc − 1 public keys/trapdoors (k(i), t

k
(i)), and hide k in the middle of these trapdoors.

Then, A′ calls A with these tc keys, and outputs d̃0 := B̃1 ⊕i a(i)d
(i)
0 , with B̃1 the

output of A, and a(i) computed by using the y(i) provided by A. We know that d̃0 = d0

when the guess of A′ was right, when ∑
i ai ≥ pctc, and when the y corresponding to

the function k has two preimages. But this event occurs with probability greater than
(1−α)×Pr

[
B̃1 = β | ∑i ai ≥ pctc

]
×pc, and because d0 is a hardcore bit, this probability

is bounded by 1/2 + negl(λ), or equivalently:

(1− α)× Pr
[
B̃1 = β |

∑
i

ai ≥ pctc

]
≤ 1

2pc
+ negl(λ)

Now, let’s come back to our probability to guess β:

Pr
[
B̃1 = β

]
= α× 1

2 + (1− α)× Pr
[
B̃1 = β |

∑
i

ai ≥ pctc

]

≤ α× 1
2 + 1

2pc
+ negl(λ)

≤ 1− η + 1
2pc

+ negl(λ)
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But on the other side, Pr
[
B̃1 = β

]
> η, so

η < 1− η + 1
2pc

+ negl(λ)

η <
1
2

(
1 + 1

2pc

)
+ negl(λ)

Because η and pc are constants7 that do not depend on n, this equality is also true
without the negl(λ):

η <
1
2

(
1 + 1

2pc

)

which is absurd because η = 1
2

(
1 + 1

2pc

)
.

Theorem 4.6.8 (non-negl-BB84-QFactory is correct and secure). Assuming Conjec-
ture 4.6.1, and by making sure that the probability for the family F to have two preimages
for a random image is bigger than a constant pa > 1/2, then there exists a set of parame-
ters pc, tc and nc such that Protocol 6 is correct with probability exponentially close to 1
and basis-blind, i.e. such that for all polynomial adversaries A:

Pr
[
B̃1 = B1 | ((B1, B2), B̃1)← (Alice⊕↭ A)

]
≤ 1

2 + negl(λ)

More precisely, we need tc ∈ (1/2, pc) to be a constant, and both tc and nc need to be
polynomial in n and Ω(n).

Proof. The proof of correctness is made in Lemma 4.6.5, and the security is a direct
application of Conjecture 4.6.1: after using Lemma 4.6.7: this theorem provides a η

such that it’s not possible to solve one chunk with probability better than η < 1, so
δ(n) := 1− η is a constant (and δ(n) ≥ 1

poly(λ)). Therefore Conjecture 4.6.1 tells us that
no adversary can get the XOR of nc chunks with probability better than 1

2 +ηnc +negl(λ).
But tc = Ω(n) and η is a constant, so no adversary can get the XOR of nc chunks with
probability better than 1

2 + negl(λ), i.e. no adversary can find B1 with probability better
then 1

2 + negl(λ).

4.7 Unprovable Extensions and Open Questions

In this section, we discuss two potential improvements of the above protocols (one to
produce a |+θ⟩ state using a single superposition instead of 2, and one to optimize the

7note that if we give them a dependence on n, we can make sure that η − 1
2

(
1 + 1

2pc

)
is non

negligible, but for simplicity we will keep them constant
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protocol non-negl-BB84-QFactory shown in Section 4.6 relying on LWE with polynomial
noise ratio). Unfortunately we are not able to prove their security. We also discuss the
questions which are left open.

4.7.1 Producing |+θ⟩ using a single superposition

The Zπ
4 -QFactory protocol runs the BB84-QFactory protocol two times to produce a

single |+θ⟩ state (and we need three executions to also obtain |0⟩ and |1⟩). However,
the BB84-QFactory protocol internally creates a very heavy superposition: it is therefore
interesting to find a way to reduce the number of superpositions to prepare a |+θ⟩.
We propose here a protocol to generate |+θ⟩, |0⟩ and |1⟩ using a single superposition.
Unfortunately we are unable to prove its security in the general case. The idea is basically
to generate a GHZ state of size 3 using the GHZ-QFactory protocol, and to measure it
appropriately to reduce it to the appropriate one-qubit state.

|d⟩+ (−1)α |d′⟩ Rz(π/2) H b

Rz(π/4) H c

Figure 4.6: Circuit to implement Protocol 7

Theorem 4.7.1 (Correctness of Protocol 7). The protocol 10 states-QFactory and its
particular case Zπ

4 -GHZ-QFactory (described in Protocol 7) are correct, in the sense that
if both parties are honest and if Alice outputs ψ, then Bob’s output is |ψ⟩. Moreover, the
protocol aborts only with probability δ (which is negligible by assumption). Moreover, in
the Zπ

4 -GHZ-QFactory protocol, the produced state is a |+θ⟩ with θ ∈ Zπ
4 while in the 10

states-QFactory the produced state is in the computational basis if the input B0 of Alice
is 0, otherwise it is a |+θ⟩ state with θ ∈ Zπ

4 .

Proof. While we could use standard linear algebra to write this proof, we will use ZX-
Calculus which provides not only succinct, intuitive and generalizable proofs, but also
explains us why the above construction fundamentally works. However, we first need
to see how hidden GHZ states can be represented in ZX-calculus (this representation
may also be of independent interest, for instance to see how hidden GHZ states could be
useful in other protocols). The first remark that we can make is that in ZX-calculus, an
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Protocol 7 10 states-QFactory and its particular case Zπ
4 -GHZ-QFactory

Assumptions: There exists a negl(λ)-GHZH capable family of functions (Defini-
tion 4.2.1). Moreover, we only need this construction to work for strings d0 of size
n = 3.
Parties: A classical client (Alice) and a quantum server (Bob).
Alice’s inputs: A bit B0 ∈ {0, 1}: if B0 = 0, Alice wants to prepare |0⟩ or |1⟩,
otherwise she prepares a random |+θ⟩ state. In the Zπ

4 -GHZ-QFactory protocol, Alice
has no input: B0 is set to 1.
Alice’s outputs: Alice outputs a classical string ψ ∈ {0, 1,+π

4
, . . . ,+ 7π

4
}. In the

Zπ
4 -GHZ-QFactory protocol, since we can only produce |+θ⟩ states, Alice outputs θ

directly.
Bob’s output: A qubit |ψ⟩.
Protocol:

1. Alice computes d0 by assigning d0[1] := B0 and randomly sampling d0[2] $← {0, 1}
and d0[2] $← {0, 1}.

2. Alice and Bob run the protocol GHZ-QFactory, where Alice’s input is d0. Alice
obtains the description (d,d′, α) of the (three qubits) hidden GHZ state |ϕ⟩ :=
|d⟩+ (−1)αd′ obtained by Bob.

3. If the bit string d is larger (in alphabetic order) than d′, then Alice renames
(d,d′) into (d′,d).

4. Bob measures the second qubit of |ϕ⟩ in the basis {|+−π/2⟩ , |−−π/2⟩}—to get the
outcome b—and measures the third qubit in the basis {|+−π/2⟩ , |−−π/2⟩}, getting
an outcome c. The circuit is pictured in Figure 4.6. Bob sends both b and c to
Alice, and outputs the remaining qubit |ψ⟩.

5. If B0 = 0, Alice outputs d[1] (the state obtained by Bob being |d[1]⟩). Otherwise
Alice outputs +θ (the state obtained by Bob being |+θ⟩) where:

θ := απ + d0[2](bπ + (−1)d[2]π

2 ) + d0[3](cπ + (−1)d[3]π

4 ) (4.67)

n qubit GHZ state |0 . . . 0⟩+ (−1)α |. . . 1⟩ can be represented using a single green spider

with n outputs and an απ phase (this is just the definition of the green spider): απ
... .

A hidden GHZ state also has some |0⟩ at various positions and local X gates applied
to some of the qubits. This can be also applied on the ZX-calculus representation, making
the set of entangled qubits more visible. For instance:

|0011⟩+ (−1)α |1001⟩ =
απ

π

π

(4.68)
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However, the ZX-calculus notation does not yet allow us to represent all hidden GHZ
states on a single diagram since the connectivity of the ith qubit depends on the value of
d0. To avoid this issue, we introduce a small notation (which turns out to be a particular
case of the transistors introduced in [JPV19]) that allows us to “cut” the wires depending
on the value of a variable, together with an equation which will turn out to be useful
later:

0 := 1 := (4.69)
∀d ∈ {0, 1}, α ∈ R, d α = dα (4.70)

The property Eq. (4.70) can trivially be proven since 0 απ
(4.69)= απ = = 0×α

(remember we remove all non-null scalars) and 1 απ
(4.69)= απ = 1×απ . Using this new

notation, it is now possible to have a single notation to represent any hidden GHZ states
|d⟩+ (−1)α |d′⟩ in term of its support d0 = d⊕d′. For instance we can rewrite Eq. (4.68)
as follows, and this notation trivially extend to hidden GHZ states of arbitrary size:

|0011⟩+ (−1)α |1001⟩ (4.68)=
απ

π

π

(4.69)=

1
απ 0

1 π

0 π

d:=0011
d′:=0011

d0:=d⊕d′

=

d0[1] d[1]π

απ d0[2] d[2]π

d0[3] d[3]π

d0[4] d[4]π

(4.71)

Note that again, we can use both d or d′ in this equation since |d⟩ + (−1)α |d′⟩ =
|d′⟩+ (−1)α |d⟩. In particular we can rename d and d′ to ensure d is smaller than d′ in
the alphabetic order (this is useful to slightly simplify the expression of θ). Using this
notation, we can derive the correctness proof:

|ψ⟩ :=
d0[1] d[1]π

απ d0[2] d[2]π π
2 bπ

d0[3] d[3]π π
4 cπ

K=
d0[1] d[1]π

απ d0[2] (−1)d[2] π
2 d[2]π bπ

d0[3] (−1)d[3] π
4 d[3]π cπ

(2.76)
S=

d0[1] d[1]π

απ d0[2] bπ+(−1)d[2] π
2

d0[3] cπ+(−1)d[3] π
4

(4.72)

(4.70)=
d0[1] d[1]π

απ d0[2](bπ+(−1)d[2] π
2 )

d0[3](cπ+(−1)d[3] π
4 )

S
(4.67)= θ d0[1] d[1]π (4.73)

We have now two cases: if B0 = 0, then d0[1] = 0 and

|ψ⟩ (4.70)= θ d[1]π = d[1]π S= d[1]π (4.74)

which means that the output is a qubit in the computational basis |d[1]⟩. Otherwise if
d0[1] = B0 = 1, then d[1] ̸= d′[1]: because we chose to define d as the smallest (in the
alphabetic order) string, it means that d[1] = 0, so d[1]π I= . Therefore:

|ψ⟩ = θ d0[1]
(4.70)= θ (4.75)
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which is a |+θ⟩ state, ending the proof.
As a final remark, if we do not assume that d < d′, then we get the state |+(−1)d[1]

θ
⟩

(this can be seen using Eq. (2.76)).

We are able to prove, similarly to Theorem 4.4.6 that no adversary can learn θ mod π
4

(this is quite direct since θ mod π
4 = d0[3] and d0[3] is supposed to be hard to find).

Unfortunately, it is harder to prove that no information leaks about θ mod π: to reduce
it to finding an information about −→d 0, we need to get information about one preimage d.
Unfortunately, it is not possible to obtain d without the trapdoor and without destroying
the state. [GV19] seems to have a similar issue, and uses a cut-and-choose approach
to solve it (some runs are tested, some runs are kept): unfortunately it fundamentally
provides polynomial security and we aim to keep superpolynomial security. Another
option would be to design fk such that it has multiple independent trapdoors, so that
we can learn partial information about d (it’s basically what we do in Section 7.4).
Unfortunately, as far as we know, adding n independent trapdoors multiplies by n the
complexity of the function fk. . . so this approach is not more efficient than what is
already done in Zπ

4 -QFactory.

4.7.2 Improving Protocol for Non-Negligible Delta

Similarly, one may want to optimize the protocol non-negl-BB84-QFactory (to deal with
non-negligible δ) and/or get rid of our conjecture.

One option would be to simply say to the server when the BB84-QFactory protocol
aborts, so that we can restart the protocol from scratch in that case. Unfortunately
we have no proof of security for this approach: this abort bit could potentially leak
additional information about d0 (even if we found no such attack). Actually, we have
a construction in which we can make sure that the protocol can only abort before the
value of d0 is fixed (this works only for single bit d0). The idea is to put no noise in the
entry corresponding to d0 (this should still be secure [BLP+13, Sec. 4.1]). Then, the
server would do the superposition only for the first M rows: if the protocol does not
abort at that step, adding the last row would not make it abort either since there is no
noise. Unfortunately, this is not enough to conclude the proof of security: the server may
manage to learn enough information about (s0, e0) via the abort bit—a-priori the server
could learn a logarithmic amount of bits about them—so that he can learn d0. Even if
this seems improbable, we still need to find a proof.

A second option would be to keep the protocol as it is, but to change the definition
of h with a random oracle. Note that this approach does not have only advantages: we

100



4.8. COMPARISON WITH RELATED WORKS

lose the nice property that for one run of BB84-QFactory the basis bit is fixed before
the start of the protocol (we won’t have anymore h(x)⊕ h(x′) = d0), but anyway this
property was not true anymore in the non-negl-BB84-QFactory protocol. Also, it means
that we need to rely not only on the hardness of LWE but also on the quantum random
oracle model (but we do not need our conjecture anymore), and the circuit to implement
the circuit may be slightly harder since we need to apply a more complicated function
h. On the other side, the proof might be simpler to write. The major difficulty is to
properly handle the quantum oracle (the oracle can be queried in superposition), but
methods like [Zha19] may make the proof possible. However, I’ve not yet tried to solve
the problem that way.

4.7.3 Other Open Questions

In this chapter we saw how to do classical-client remote state preparation, allowing us to
obtain classical-client blind quantum computing. However, the question is still open of
whether we can do both blind and verifiable blind quantum computing (meaning that
the server cannot alter the output of the computation) with superpolynomial security
([GV19] provides polynomial security as discussed in Section 4.5). This may be done for
instance by inserting our QFactory protocol into the VBQC protocol [FK17]. However,
because our protocol is not verifiable, additional care must be taken. Notably, it may be
required to add a testing round in our protocol, or to change the way traps are tested in
VBQC (maybe by testing the distribution when traps are measured with random angles)
not to be vulnerable to a “3-theta” attack.

Similarly, it could be tempting to use our QFactory protocol into other protocols, for
instance to do Multiparty Quantum Computing [KKM+21]. Unfortunately, the security
is not guaranteed directly for the same reasons. I am also working on replacing quantum
communications in position-based verification (where the goal is to prove that we are at
a given position in space) for which an impossibility results exists when all parties are
classical [CGM+09]. This is discussed in Chapter 8.

4.8 Comparison With Related Works

In this section, we compare our approach with the related works. We summarize in
Table 4.1 the strengths and weaknesses of each approach.

8For both verifiability and blindness.
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Related Works Our Work
[Mah18a] [Mah18b] [Bra18] [GV19] Chapter 4 Section 4.3

Blind Yes No Yes Yes Yes Yes
Verifiable No Yes No Yes No No
Modular RSP No No No Yes Yes Yes
Security SupPoly SupPoly SupPoly Poly8 SupPoly SupPoly
Composable No No No Yes No No
Costly testing No Yes No Yes No No
Assumptions LWE

SupPoly
LWE

SupPoly
LWE
Poly

LWE
SupPoly

LWE
SupPoly

LWE Poly
+ conjecture

Multi-qubits No No No No Yes No

Table 4.1: Comparison with the related works. By “Poly” me mean “polynomial”,
“SupPoly” means “superpolynomial”. More specifically, in the “Security” line, we mean
that the security scales polynomially or superpolynomially, and in the line “Assumptions”,
“LWE poly/SupPoly” means that the protocol is secure and correct assuming the hardness
of the LWE problem with polynomial/superpolynomial noise ratio.

The groundbreaking work of Mahadev [Mah18a] was the first result achieving classical-
client blind quantum computing and is complementary to our own independent approach.
The protocol of Mahadev has the advantage of being non-interactive (a single round of
message is required) but provides a monolithic protocol targeting only classical-client
blind quantum computing (note also that this protocol hides the input but not the
computation: in order to also hide the computation one should encode the circuit in
the input and replace the actual circuit with a universal quantum machine). On the
other hand, our QFactory protocol is modular and provides a fundamental and atomic
functionality: faking quantum channels with classical communications. This allows our
protocol to be potentially reused in many other protocols, including, maybe, in quantum
multi-party computating or verifiable blind quantum computing. Note however that a
separate proof a security must be written for each new protocol involving QFactory since
we prove (see Chapter 6) that it is impossible to obtain general composable security for
any classical-client RSP protocol. Moreover, for verifiable protocols, our protocol may
need additional testing as discussed in Section 4.7.3.

Note also that the work of Mahadev is based on a cryptographic construction assuming
the hardness of the Learning With Error (LWE) problem with a super-polynomial noise
ratio, which is a less standard assumption compared to LWE with polynomial noise ratio.
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Later, Brakerski [Bra18] improved the construction of Mahadev in order to allow the use
of LWE with polynomial noise ratio. One protocol presented in this chapter also requires
the assumption present in [Mah18a]—we will see in Chapter 5 that we need this in order
to obtain a negligible δ—but we also provide a second construction that can be used to
generalize our QFactory protocol assuming only the hardness of LWE with polynomial
noise ratio9 (corresponds to a non-negligible δ).

Remark 4.8.1. Concerning the modularity, one could make the remark that in [Mah18a]
the server also ends up with a quantum state |ϕ⟩ = XaZb |ψ⟩, and therefore this protocol
may be seen as an RSP protocol. We do not claim that we cannot turn [Mah18a] into an
RSP protocol (similarly, we may also potentially be able to adapt our protocol to obtain
Quantum Fully Homomorphic Encryption), however, the security proof regarding how
|ϕ⟩ is hidden to the server is not direct and some additional work must be done. The
reason is that [Mah18a] shows that the input of the circuit stays hidden to Bob, but Bob
may be able to maliciously play with the value of a and b to learn additional information
about the one-time padded state |ϕ⟩.

Mahadev also provides in another seminal paper [Mah18b] a protocol to achieve
verifiable10 quantum computing with a classical client by extending the post-hoc proto-
col [MF18] to a classical client setting. However, this protocol is not blind (the server
learns the computation done by the client), while in this thesis we focus on blind quantum
computing.

The more recent result of Alexandru Gheorghio and Thomas Vidick [GV19] (whose
construction is based on [BCM+18]) also provides, similar to ours, a modular protocol
for classical-client RSP protocol. They actually provide a verifiable classical-client RSP
protocol (i.e. the client has some guarantees on the fact that server obtained the good
state and not another state), and show that their protocol can be used in the Verifiable
Blind Quantum Computing (VBQC [FK17]) protocol to obtain both blind and verifiable
quantum computing. Actually, it is proven secure in the constructive cryptography
framework, allowing general composability of the protocol (this does not rule out our own
impossibility result presented in Chapter 6 since they require an additional assumption
called Measurement Buffer effectively creating a quantum link between the simulator and
the attacker). However, the security scales only polynomially with the security parameter:
as a result, a polynomial distinguisher can break the security of the protocol (both at the
level of the RSP functionality and when the protocol is used inside the VBQC protocol).

9Note however that the security relies on some unproven conjectures.
10Verifiable means that the client can verify that the result given by the server is correct.
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This is true not only for the verifiable property—which is hard to avoid at the level of
the RSP protocol, but may be avoidable at the level of the VBQC protocol—but also for
the blindness property.

Remark 4.8.2. The reason behind this polynomial security for the blindness comes from
the fact that [GV19] relies on an assumption known as “adaptive hardcore bit property”,
which informally states that it is hard to output y, a preimage x, a measurement b and
the corresponding angle θ. However, in the actual protocol, accessing x is not possible as
it would destroy the state: therefore [GV19] needs to apply a cut-and-choose approach,
i.e. repeat the protocol N times, test N − 1 of them by destroying the state to check
that the adversary could know x, and outputs the remaining instance. However, there
may exist a way to sample y and b such that θ is known but x cannot be recovered: this
is not in contradiction with the adaptive hardcore property. If such a sampling method
exists (which we do not know) then an attack would be to be honest in N − 1 runs and
to use the malicious sampling in the remaining run: if this malicious run is not tested
(with probability 1

N
), Bob can learn θ. Note that we do not suffer from this issue since

our reduction does not rely on the fact that x must be known.

In term of efficiency, [GV19] generates single qubit states, while we can also generate
large hidden GHZ states using a single superposition. This allows us to produce an n

qubits state using O((n+M)N) operations, where M and N are very large constants
describing the size of the matrix involved in the function description, while one would
need O(nMN) operations to create such a state using more standard methods. Moreover
[GV19] uses internally a cut-and-choose approach (some runs are tested and destroyed,
some other runs are used in practice), required for both the blindness and verifiable
property, but explaining why the security scales polynomially. As a consequence, in
order to get a decent security, [GV19] needs to create (and destroy) many times the
superposition in order to obtain a single qubit.

Concerning the differences in term of method, note that all these works internally
need to apply a function (notably claw-free, which is close to our 2-to-1 requirement) in
superposition11. In our case, this superposition is uniform over the input set, while in the
other approaches the superposition is not uniform but rather Gaussian. Having a uniform
superposition allows us to have a state that is exactly the expected one (this turns out to
be useful when considering LWE with polynomial noise ratio). In the other approaches,
the state is never perfectly equal to the expected state, but superpolynomially close to it
when relying on LWE with superpolynomial noise ratio. Of course, this is good enough in

11In [Mah18b] this is needed to hide a measurement and in [GV19] to hide a quantum state.
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practice since it is superpolynomially hard to distinguish it from the expected quantum
state.
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Function Construction

“A picture is worth a thousand words.”

— A wise proverb

Figure 5.1: Triptych of St Hippolyte by Dieric Bouts and Hugo van der Goes (revisited)

In the previous sections, we saw how to build a protocol that fakes a quantum
channel using a purely classical channel, and we saw how it turns out to be useful to do
classical-client blind quantum computing. However, we left open the question of the

construction of the δ-GHZH capable family (Definition 4.2.1). In this chapter, we explain
how to build such family assuming the hardness of the Learning With Errors (LWE): when
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relying on the hardness of LWE with superpolynomial noise ratio we obtain a negligible
δ, otherwise if we rely on the more standard assumption of LWE with polynomial noise
ratio, we obtain δ = 1

poly(λ) . We start with a quick overview of our method in Section 5.1
(introducing the LWE problem very briefly). We present in Section 5.2 the LWE problem
in details, and we do a complete analysis of our construction in Section 5.3 in which we
explicit a set of parameters usable for our construction depending on whether we rely on
the hardness of LWE with polynomial or superpolynomial noise ratio.

5.1 Quick Overview

As a remainder, we wish to implement a negl(λ)-GHZH capable family {fk}k∈K having
the following properties (see Definition 4.2.1 for the precise definition):

• For any d0 ∈ {0, 1}n (the support) we can sample an index k and the corresponding
trapdoor using (k, tk)← Gen(1λ,d0).

• fk must be negl(λ)-2-to-1 (i.e. an overwhelming fraction of the outputs have exactly
two preimages).

• fk can be efficiently computed given k, but should be hard to invert without tk.
Moreover, it should be hard to obtain any information on d0 given k.

• Given the trapdoor tk, fk can be efficiently inverted.
• For any x ̸= x′ such that f(x) = f(x′), h(x)⊕ h(x′) = d0.
To implement this family, we rely on the hardness assumption of the LWE problem

(more details in Section 5.2): informally this problem states that given a random matrix
A ∈ ZM×Nq and a vector b ∈ ZMq , it should be hard to know if b was sampled uniformly
at random or if b = As + e, where s ∈ ZNq was sampled uniformly at random and e ∈ ZMq
(the noise or error) was sampled according to a small discrete Gaussian1.

The starting point of our work is the trapdoor construction provided by [MP12].
They provide an algorithm to generate a matrix A ∈ ZM×Nq (q will be a power of two)
indistinguishable from a random matrix, together with a trapdoor matrix R. If the noise
e ∈ ZMq is sufficiently small2, the function gA(s, e) := As + e is injective. Moreover, given
the trapdoor R, one can easily invert the function gA, otherwise inverting this function
is hard: gA(s, e) is indistinguishable from a random vector given A. This property is
depicted in Figure 5.2a.

1This basically implies that e has small Euclidean norm.
2In the actual construction, we also require s to be small because we rely on the equivalent but more

efficient normal-form of LWE, but for simplicity we use the classic LWE problem in this overview.
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(a) Illustration of gA: given y it is hard to
recover s and e.
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(b) Illustration of the 2-to-1 property:
f(s, e) = As + e = As′+ e′+ y0 = f(s′, e′),
with s′ = s − s0, e′ = e − e0 and y0 =
f(s0, e0).
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(c) Some images only have a single preim-
age. . .

A
s
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e
0

As e

A
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′
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(d) To limit that, we sample e0 according
to a small Gaussian (red) and e is defined
on a much bigger hypercube (blue).

Figure 5.2: Graphical representation of the first version of the function in dimension 2.
The black dots represent the lattice spanned by all points of the form As, and the green
circle is the noise domain in which one can easily invert g.

From that, we can first see how to get a δ-2-to-1 family of functions, and we will
complete the construction later. Note that the larger the noise e and e0 are, the larger
δ is. So a perfect (but insecure) 2-to-1 family would use e = e0 = 0: therefore, to
better understand this construction, it may be practical to imagine that e = e0 = 0
during a first reading. The idea of the construction is to sample first a matrix Au and
its trapdoor R using the construction of [MP12]3, and then to sample an image vector
y0 := Aus0 + e0 ∈ ZMq (where s0 is sampled uniformly at random over ZNq and e0 ∈ Zmq
is sampled according to a small discrete Gaussian). Intuitively, this y0 will correspond
to the difference between two preimages. We define now define a first version of the

3This trapdoor allows us to invert our function fk, but later, it can also be seen as a way to recover
the randomness used when encrypt the bit string d0.
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function fk, where k := (Au,y0) as:

fAu,y0 : ZNq × E × {0, 1} −→ ZMq (5.1)
(s, e, c) 7−→ Aus + e + c× y0

where E ⊆ ZMq will be a set of small vectors. That way, if all vectors in E are small
enough, fAu,y0 has at most two preimages, one for c = 0 and one for c = 1 (as pictured
in Figure 5.2b):

f(s, e, 0) = Aus + e (5.2)
= Au(s− s0) + (e− e0) + y0 (5.3)
= f(s− s0, e− e0, 1) (5.4)

We remark that in order to have two preimages, we want to make sure that both e ∈ E
and e− e0 ∈ E (otherwise we only get one preimage as pictured in Figure 5.2c), meaning
that the intersection between E and E − e0 must be as big as possible. The size of this
intersection will basically determine the value of δ. To have a negligible δ (and therefore
a correct protocol) we want e0 to be as small as possible as illustrated in Figure 5.2d
(so that E − e0 ≈ E). . . on the other hand if e0 is too small the function is not secure
anymore (if e0 is really too small, we could for instance find e0 by doing an exhaustive
search). These two constraints basically force us to have e0/q superpolynomially small,
hence forcing us to rely on LWE with superpolynomial modulus to noise ratio (or simply
noise ratio). Note that the precise analysis will not fit in this first overview, and will be
studied in depth in the next sections.

Now that we have a negl(λ)-2-to-1 family, it is time to see how to improve it in order
to obtain h such that for any two x, x′ such that f(x) = f(x′), h(x)⊕ h(x′) = d0. For
that, we will update the previous construction and now sample y0 as follows: We will first
sample additional lines Al

$← Zn×Nq to add to the matrix Au. Then, as before, we will
sample s0 uniformly at random over ZNq and e0 ∈ ZM+n

q will also be sampled according
to a small discrete Gaussian. Finally, we compute

y0 :=
 Au

Al

s0 + e0 + q

2

 0M

d0

 (5.5)

(we transparently interpret the bit string d0 as a binary vector in ZNq ). We update
similarly our function f by adding a parameter d ∈ {0, 1}n:

fAu,Al,y0(s, e, c,d) :=
 Au

Al

s + e + q

2

 0M

d

+ c× y0 (5.6)
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Intuitively this q
2d0 term adds a huge noise (much bigger than e0): the only way to cancel

this huge noise (appearing only c = 1) is that a single preimage also adds such a term.
More precisely, we can remark that because q is even:

fAu,Al,y0(s, e, 0,d) =
 Au

Al

s + e + q

2

 0M

d

 (5.7)

=
 Au

Al

(s− s0) + (e− e0) + q

2

 0M

d⊕ d0

+ y0 (5.8)

= fAu,Al,y0(s− s0, e− e0, 1,d⊕ d0) (5.9)

and that therefore (skipping a small technicality) for any two preimages (s, e, 0,d) and
(s′, e′, 1,d′), we have d ⊕ d′ = d0. So by simply defining h(s, e, c,d) = d we get the
XOR property. The role of the q

2 in the above equations is now clearer, it allows to
turn an addition modulo q into an addition modulo 2 (used in our XOR property) since
q
2(d− d0) = q

2d⊕ d0.
The trapdoor property is a fairly direct consequence of the construction of [MP12]:

using the trapdoor R on the upper part of f , we can learn s and the upper part of e.
Then, we can consider the lower part of the matrix, remove from it Als: we are left with
el + q

2d. Because el is small, we can learn d by checking if the components are closer to
0 or to q

2 . To obtain the other preimage, we compute (s− s0, e− e0,d⊕ d0).
Finally, we are left with the indistinguishability property: since Au is indistinguishable

from a random matrix, and Al is actually a random matrix, thus A :=
 Au

Al

 is

indistinguishable from a random matrix. But, under the hardness assumption of LWE,
As0 + e0 is indistinguishable from a random vector. Therefore, since adding a constant
vector to a uniformly sampled vector does not change its distribution, one cannot

distinguish As0 + e0 from As0 + e0 +
 0M

d0

, or from any vector of the form As0 + e0 + 0M

d

.

We provide in the next sections a more in-depth analysis in order to properly handle
the noise, we find an explicit set of parameters allowing f to be negl(λ)-2-to-1, and
we give a method to prove that a maliciously sampled f is indeed negl(λ)-2-to-1 and
has the XOR property. While this is not required right now, it will prove useful when
considering Non-Interactive and Non-Destructive Zero-Knowledge proofs on Quantum
States in Chapter 7.
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We use in this work the LWE problem. However, one may wonder whether other post-
quantum hardness problems can be used. Two others major post-quantum candidates
are code-based and isogeny-based cryptography. I’ve not tried to use isogeny-based
cryptography, but I tried to construct fk using code-based cryptography. We discuss
more on that in Section 5.4, but long story short, I was not able to find a code-based
construction as the errors in code-based cryptography add-up to quickly compared to
lattice-based cryptography.

5.2 Introduction to the Learning With Errors (LWE)
problem

In this section, we formalize the definition of the LWE problem, derive several useful
properties and describe the construction of [MP12].

5.2.1 Definitions

The Learning With Errors (LWE) problem was introduced in [Reg05].

Definition 5.2.1 (Learning With Errors (LWE) [Reg05]).
Let N ∈ N 4, q = q(N) ∈ N≥2 be a modulus and χ a distribution on R (χ may be
continuous or discrete (χ ⊆ Z) and will always be reduced modulo q). For any s ∈ ZNq ,
we define As,χ as the distribution on ZNq × [0, q) (or ZNq ×Zq if χ is discrete) obtained by
sampling a ∈ ZNq uniformly at random, e← χ and outputting (a, aT s + e mod q).

We say that an algorithm solves the search-LWEq,χ problem (in the worst case, with
overwhelming probability) if for any s ∈ ZNq , given an arbitrary number of samples from
As,χ, it outputs s with overwhelming probability. We say that an algorithm solves the
decision-LWEq,χ problem (on average, with non-negligible advantage) if it can distinguish
with non-negligible advantage between the distribution As,χ where s $← ZNq , and the
uniform distribution U := U(ZNq × [0, q)) (when χ is discrete, we consider instead the
uniform distribution U := U (ZNq × Zq)).

We can also formulate this problem using matrices by grouping a fixed number M ∈ N
of samples: For any s ∈ ZNq , we can sample A $← ZM×Nq and e← χM a (typically small)
vector where each of its component is sampled according to χ. Then let b := As + e.
The search problem consists in finding s given (A,b). The decision problem consists in

4While usually the parameters N is written in lowercase, we will use this notation here since n
already represents the size of the support.
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deciding, when receiving a couple (A,b), if b has been sampled uniformly at random
(over [0, q)M if X is continuous, or over Zmq if χ is discrete) or if b has been sampled
according to the procedure described above (and therefore b = As + e).

Note that having access to less samples can only make the problem harder. On
the other hand, one can show that having access to polynomially many samples is
enough to generate arbitrary many further samples, with only a minor degradation in
the error [GPV08, ACP+09, APS15]. Note also that the the worst-case and average-case
decision problems are in fact equivalent: [Reg05, Lem. 4.1] shows how it is possible
to turn a distinguisher that can solve the decision-LWE problem with non-negligible
advantage into a better distinguisher that can solve the decision-LWE problem with
overwhelming probability.

The distribution χ can be instantiated in many different ways: for example when χ is
always equal to 0, these problems are trivial, and when χ is uniform, they are impossible.
In practice, χ is usually a (discrete or continuous) Gaussian (or more rarely a rounded
Gaussian [Reg05]):

Definition 5.2.2 (Continuous and discrete Gaussian). For any s ∈ R>0 and any vector
x ∈ RN , we define ρs(x) := exp

(
−π

(∥x∥2
s

)2
)

= exp(−πxTx/s2). By applying a linear
transformation on x, we can generalize this notion: for any positive-definite matrix
Σ > 0, we define:

ρ√Σ(x) := exp(−π · xTΣ−1x) (5.10)

In particular, if Σ = s2I, we have ρs = ρ√Σ. The normalization of the expression gives∫
Rn ρ√Σ(x) =

√
det Σ and

∫
Rn ρs(x) = sN . We can now define the continuous Gaussian

distribution:

DN
s (x) := ρs(x)/sN D√Σ(x) := ρ√Σ(x)/

√
det Σ (5.11)

Note that sampling from DN
s is equivalent to sampling each component from Ds := D1

s .
Moreover, due to our choice of normalization, s and Σ are not exactly equal to the
standard deviation and to the covariance matrix: Ds has standard deviation σ := s/(

√
2π)

and the actual covariance of D√Σ is Σ′ := Σ/(2π).
If Λ ⊆ RN is a lattice (i.e. a discrete additive subgroup of RN), we define for any

c ∈ RN the coset Λ + c = {x + c | x ∈ Λ} and ρ√Σ(Λ + c) := ∑
x∈Λ+c ρ√Σ(x). We

can define now the discrete Gaussian on Λ + c by simply normalizing ρ√Σ(x). For any
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x ∈ RN , if x /∈ Λ + c, DΛ+c,
√

Σ(x) = 0 and if x ∈ Λ + c:

DΛ+c,
√

Σ(x) :=
ρ√Σ(x)

ρ√Σ(Λ + c) (5.12)

In the following, for α ∈ (0, 1), the discrete Gaussian on Z, DZ,αq = D
Z,
√

(αq)2I
, will be

particularly important to sample the noise.

Note that [Reg05] defined originally a different kind of discrete Gaussian (not equiva-
lent to the “true” discrete Gaussians we just defined) that we call rounded Gaussians. To
sample from such distribution, we first sample from a continuous Gaussian and round the
result to the nearest integer modulo q. While reductions are easier to prove using rounded
Gaussians, they do not benefit from some advantageous properties of discrete Gaussians:
for instance the sum of two rounded Gaussians may not be a rounded Gaussian, and
it is harder to bound the singular value of rounded Gaussians (this will be required in
Lemma 5.2.10).

The next lemma is useful to bound the length of a vector sampled according to a
discrete Gaussian.

Lemma 5.2.3 (Particular case of [Ban93, Lem. 1.5][MP12, Lem. 2.6]). For any s > 0,
we have:

Pr
[
∥x∥2 ≥ s

√
n
∣∣∣ x← Dn

Z,s

]
≤ 2−n (5.13)

5.2.2 Hardness of LWE

The LWE problems are widely supposed to be hard to solve even for quantum computers
and are the basic building block of many post-quantum cryptographic protocols [Pei16].
In particular, it is on average as hard as worst-case problems on lattices (the precise
definition of these problems is not important for this thesis).

Lemma 5.2.4 (Hardness of LWE [PRS17]). Let N, q be integers and α ∈ (0, 1) be such
that αq > 2

√
N . If there exists an algorithm that solves decision-LWEq,Dαq

, then there
exists an efficient quantum algorithm that approximates the decision version5 of the
shortest vector problem (GapSVPγ) and the shortest independent vectors problem (SIVPγ)
to within γ := Õ(N/α).

5Note that the original reduction from [Reg05] targets the search version: however, the search-to-
decision reductions typically add some small loses in the parameters, like [MP12]. This direct reduction
to decision-LWE is therefore more efficient.
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To have strong security guarantees, we usually want γ to be polynomial in N , but
this is sometimes impossible. According to [Pei16] the best algorithm for solving these
problems in polynomial time works for only slightly sub-exponential approximation
factor γ = 2Θ(N log logN/ logN). The algorithm [Sch87] also provides a tradeoff between the
approximation γ and the running time: an approximation of γ = 2k can be obtained in
time 2Θ̃(N/k). This suggest that there is no efficient algorithm for γ = 2N

ϵ

for ϵ ∈ (0, 1
2)

(the algorithm provided by [Sch87] would indeed run in subexponential time 2N
1−ϵ

). In
practice, many works rely on the security of LWE when γ is superpolynomial ([BGG+14]
uses for example the above assumption that γ = 2N

ϵ

for some ϵ ∈ (0, 1
2)), and we will

sometimes need this same assumption.
While the hardness assumption given in Lemma 5.2.4 targets a continuous noise

distribution, it can also be adapted to discrete Gaussians. In particular, [Pei10, Thm. 3.1]
can be used to show that if decision-LWEq,Dαq

is hard, then the discrete version decision-

LWEq,DZ,s
is hard for s :=

√
(αq)2 + ω

(√
log λ

)2
, where ω(

√
logN) denotes any function,

fixed across all the thesis, such that limN→∞
√

logN/ω(
√

logN) = 0 (for instance, we
can take ω(

√
logN) = logN). More precisely, [Pei10] gives a method to turn any sample

from LWEq,Dαq
into a sample (indistinguishable from a sample) of LWEq,DZ,s

.

Corollary 5.2.5 (From continuous Gaussian to discrete Gaussian, corollary of Thm. 3.1,
[Pei10]). Let λ, q ∈ N, α ∈ (0, 1). If ec is sampled according to Dαq and e ← ec +
D

Z−ec,ω

(√
log λ

), then the marginal distribution of e is within negligible statistical distance

∆ = 1
exp(πω(

√
log λ)2 − ln(2λ))− 1

= negl(λ) (5.14)

of DZ,s with s :=
√

(αq)2 + ω
(√

log λ
)2

. Moreover, if there exists instead x ∈ Zq (for
example x = aT s for some s ∈ ZNq and a ∈ ZNq ) such that ec is distributed according
to x + Dαq mod q, then the statistical distance between the distribution e mod q and
x + DZ,s mod q is ∆ = negl(λ). Finally, if ec is uniformly sampled over [0, q), the
marginal distribution of e is uniform over Zq.

Proof. The first part of this corollary is a direct application of [Pei10, Thm. 3.1]: We
define c1 = 0, Λ1 = Z, Σ2 = (αq)2I1, Σ1 = ω(

√
log λ)2I1 with

√
Σ1 = ω(

√
log λ) ≥ ηε(Z),

where ε is a negligible function of N (the last inequality comes from [Pei10, Lem. 2.5]).
When x2(= ec) is chosen according to a continuous Gaussian, the marginal distribution
of e is within statistical distance 8ε = negl(λ) of DZ,

√
Σ (the constant can actually be
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improved in this specific case), with Σ = Σ1 + Σ2 = (αq)2I1 +ω(
√

log λ)2I1 = s2I1, which
concludes the first part of the proof.

To see that the equality also holds when ec ← x + Dαq mod q for some x ∈ Z, we
remark that for any ē ∈ Zq and for any ec = x+ e′c ∈ R:

p := Pr
 ē = e mod q

∣∣∣∣∣∣ e← ec + D
Z−ec,ω

(√
log λ

)  (5.15)

= Pr
 ē = e

∣∣∣∣∣∣ e← ec + D
Z−ec,ω

(√
log λ

) mod q
 (5.16)

= Pr
 ē = e

∣∣∣∣∣∣ e← x+ e′c + D
Z−e′

c,ω

(√
log λ

) mod q
 (5.17)

where the last equality comes from Z− ec = Z− (e′c mod q). But we already know that
e′c +D

Z−e′
c,ω

(√
log λ

) is statistically close to DZ,s from the first part of the corollary, which

concludes this part of the proof.
Now, let us assume that ec is sampled uniformly at random over [0, q). Because ec can

be uniquely decomposed into ec = ec,1 + ec,2 where ec,1 ∈ {0, . . . , q − 1} and ec,2 ∈ [0, 1),
and because Z− ec = Zn − ec,2 we have:

Pr
 ē = e mod q

∣∣∣∣∣∣ ec ← [0, q), e← ec + D
Z−ec,ω

(√
log λ

) 

= 1
q

∫ 1

0
dec,2

q−1∑
ec,1=0

∑
e∈Z
ē=e[q]

ρ
ω

(√
log λ

)(e− ec,1 − ec,2)

ρ
ω

(√
log λ

)(Z− ec,2)

Similarly, because any integer ê ∈ Z can be decomposed uniquely into ê = e− ec,1 where
ec,1 ∈ {0, . . . , q− 1}, and e = ē mod q, we can merge the two sums into a single sum over
ê ∈ Z, replace the e− ec,1 with ê, and use the fact that ∑ê∈Z ρω(ê− ec,2) = ρω(Z− ec,2)
to conclude that the probability is equal to 1/q: it corresponds to a uniform sampling
over Zq.

While in the usual LWE problem, s is sampled uniformly at random over ZNq , it is
also possible to sample s according to a small Gaussian. Since, as we will see, this can
be seen as a reformulation of the problem in its Hermite Normal form (HNF), this new
sampling method is actually at least as secure as the initial uniform sampling, and it
appears to be more efficient. Moreover, the construction given in [MP12] will naturally
be formulated in this form, so in this work we will also sample s according to a small

116



5.2. INTRODUCTION TO THE LEARNING WITH ERRORS (LWE) PROBLEM

Gaussian (however, one can easily come back to the initial formulation as we will see
later).

Lemma 5.2.6 (Normal LWE problem [ACP+09, Lem. 2]). Let q = pk be a prime power.
There is a deterministic polynomial-time transformation T that, for arbitrary s ∈ ZNq and
error distribution χ, maps As,χ to As̄,χ where s̄← χN , and maps U(ZNq × Zq) to itself.

The idea of the proof given in [ACP+09, Lem. 2] (following [MR09], see also [Pei16,
p. 23]) is to first obtain and select enough samples (Ā, ȳ := Ās + s̄), s̄ being sampled
according to χ, to ensure that Ā ∈ ZN×Nq is invertible. Then, any new sample (a, y :=
⟨a, s⟩ + e) can be updated into (a′, b′) where a′ := −(ĀT )−1a and b′ := y + ⟨a′, ȳ⟩ =
⟨a′, s̄⟩+ e.

5.2.3 The [MP12] Construction

We saw that the LWE problem can provide one way functions (because it is hard to
recover s and e from As + e), but it turns out that LWE can also be used to introduce a
trapdoor inside A such that this function can easily be inverted [GGH97, Ajt99, AP11,
MP12]. In order to realize the primitives described in Definition 4.2.1, we will use the
trapdoor system presented in [MP12]. This work introduced an algorithm MP.Gen that
samples a matrix A and a trapdoor R. In addition, A is indistinguishable from a random
matrix (without R), and gA(s, e) := As + e is injective and can be inverted given R for
any (s, e) ∈ X (X will be defined later as sets of elements having a small norm).

In this thesis, we will focus on the (more efficient) computationally-secure construction
presented in [MP12] (we also require the modulus q := 2k to be a power of 2), but the
same method should extend to other constructions with even q. We give in Definition 5.2.7
the construction we will use, and we explain after the intuition behind it. The reader
not interested by the choice of parameters can safely skip the rest of the section.

Definition 5.2.7 ([MP12]). Let λ ∈ N be a security parameter, and P0 = (k,N, α, rmax)
with (k,N) ∈ N2, α ∈ (0, 1) and rmax ∈ R, be some parameters that can depend on

λ. We define M := N(1 + k), q := 2k, Xg :=
(s, e) ∈ ZNq × ZMq

∣∣∣∣∣∣
∥∥∥∥∥∥
 s

e

∥∥∥∥∥∥
2

≤ rmax

,
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g :=
[
1 2 4 . . . 2k−1

]T ∈ Zkq , and the gadget matrix G as:

G := In ⊗ g =



...

g
...

. . .
...

g
...


∈ ZNk×Nq (5.18)

We define now in Algorithm 2 a procedure to sample a public matrix and its trapdoor
(A,R)← MP.GenP0(1λ), and for any (s, e) ∈ Xg we define y := gA(s, e) and its inversion
procedure (s̃, ẽ) := MP.Invert(R,A,y).

Algorithm 2 Construction from [MP12]

MP.GenP0(1λ)

1 : Â $← ZN×Nq

2 : R =
[
R1 R2

]
← DNk×2N

Z,αq

3 : A :=
[

Â
G−R2Â−R1

]
∈ ZM×Nq

4 : return (A,R)

gA(s, e)

1 : return As + e

MP.InvertP0(R :=
[
R1 R2

]
,A,y)

1 : // Return (s̃, ẽ) ∈ Xg s.t. y = gA(s, e)

2 : s̃ := InvertGadgetP0
(
[
R2 INk

]
y)

3 : ẽ := y−As̃

4 : if
∥∥∥∥∥
[

s̃
ẽ

]∥∥∥∥∥
2
> rmax return ⊥ fi

5 : return (s̃, ẽ)

InvertSmallGadgetP0
(y =

[
y0 . . . yk−1

]T
)

1 : // Return s ∈ Zq such that y = gs + e

2 : s := 0
3 : for i = k − 1, . . . , 0 do

4 : if yi − 2is /∈
[
−q4 ,

q

4

)
mod q

5 : s := s+ 2k−1−i fi endfor
6 : return s

InvertGadgetP0
(y =

[
yT1 . . .yTN

]T
)

1 : // Return s ∈ Zn
q such that y = Gs + e

2 : for i = 1, . . . , N do
3 : si := InvertSmallGadgetP0

(yi)
4 : endfor

5 : s :=
[
s1 . . . sn

]T
6 : return s

The idea of the construction given in Definition 5.2.7 is to use a gadget matrix G
which is easy to invert even in the presence of noise, and then to hide this matrix inside
a random looking matrix A. G is easy to invert because G basically encodes all bits of
the binary representation of each component of s in a different component (where a 1 is

118



5.2. INTRODUCTION TO THE LEARNING WITH ERRORS (LWE) PROBLEM

encoded by q/2+noise, and 0 is encoded by 0+noise): the inversion of G is doable by
a rounding operation, starting from the least significants bits of the components of s.
Then, as we will see, R can be used to invert As + e: with R we can obtain a vector of
the form Gs + e′ (e′ is small if R has sufficiently small singular values), and then since
G is easy to invert we can obtain s easily. We formalize now these statements.

We describe now conditions that are sufficient to ensure that gA is injective.

Lemma 5.2.8 ([MP12]). If LWEq,DZ,αq
is hard and if Nk = poly(λ), then the matrix A

obtained via MP.Gen is indistinguishable from a uniform random matrix.

Proof. For completeness, we sketch the proof given in [MP12]. Since G is a fixed
matrix, it is easy to subtract G from A and transpose the matrices: A looks random
iff (ÂT , ÂTRT

2 + RT
1 ) looks random. But this is nearly an exact LWE instance in its

normal form (R2 is indeed sampled according to a small Gaussian). The only difference
is that the Â samples are “reused” multiple times since RT

i are matrices and not vectors.
However, as shown in [PW08, Lem. 6.2], an hybrid argument can be made (by gradually
replacing each column with random elements) to prove that it is still hard to distinguish
it from a random matrix if LWEq,DZ,αq

is hard (since we obtain Nk hybrid games, we
need Nk = poly(λ)).

Remark 5.2.9. It is possible to easily translate the normal form into a more usual form
in which s is sampled uniformly at random: one can sample a random invertible matrix

Ar ∈ ZN×Nq , and define A′ :=
 I

A

Ar.

Lemma 5.2.10. Let Â ∈ ZN×Nq , (R1,R2) ∈ (ZNk×N)2, A :=
 Â

G−R2Â−R1

 ∈
ZM×Nq . If the highest singular value σmax(R) of R is such that

√
σmax(R) + 1 < q

4rmax
,

then gA : Xg → ZMq is injective and for all (s, e) ∈ Xg, MP.Invert(
[
R1 R2

]
,A,As +

e) = (s, e).
Moreover, if we denote by C ≈ 1√

2π the universal constant defined in [MP12, Lem. 1.9],
and if we have for the parameters P0 defined in Definition 5.2.7:√(

C × αq ×
√
N(
√
k +
√

2 + 1)
)2

+ 1 ≤ q

4rmax
(5.19)

then with overwhelming probability (on N) ≥ 1− 2e−N , we have
√
σmax(R)2 + 1 < q

4rmax

and therefore gA is injective.
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Proof. This proof can be obtained by combining different theorems from [MP12]. For
completeness, we put the full proof of this lemma here. For the injectivity, we assume that
there exist (s, s′) ∈ S and (e, e′) ∈ E such that gA(s, e) = gA(s′, e′). So A(s− s′) + (e−
e′) = 0, and it is enough now to prove that s = s′ to obtain e = e′. We multiply (on the
left) this equation by

[
R2 INk

]
: we obtain G(s−s′)−R1(s−s′)+

[
R2 INk

]
(e−e′) = 0,

i.e. if we define R̃ :=
[
−R1 R2 INk

]
, ẽ := R̃

 s− s′

e− e′

 and s̃ = s − s′, we have

Gs̃ + ẽ = 0. First, we remark that:

σmax(R̃T ) = ∥R̃T∥2

= max
x,∥x∥2=1

∥∥∥∥∥∥∥∥∥


−RT

1

RT
2

INk

x
∥∥∥∥∥∥∥∥∥

2

= max
x,∥x∥2=1

√√√√√
∥∥∥∥∥∥
−RT

1

RT
2

x
∥∥∥∥∥∥

2

2

+ ∥x∥2
2

=

√√√√√ max
x,∥x∥2=1

∥∥∥∥∥∥
RT

1

RT
2

x
∥∥∥∥∥∥

2

2

+ 1

=
√

max
x,∥x∥2=1

∥∥∥RTx
∥∥∥2

2
+ 1

=
√
σmax

(
RT

)2
+ 1

=
√
σmax (R)2 + 1 (5.20)

We prove now that for all i, ẽ[i] ∈ (− q
2 ,

q
2): If we denote by ui the vector such that

ui[i] = 1 and for all j ̸= i, ui[j] = 0, we have

|ẽ[i]| = |uTi ẽ| =
∣∣∣∣∣∣uTi R̃

 s− s′

e− e′

∣∣∣∣∣∣ =
〈

R̃Tui,

 s− s′

e− e′

〉 (5.21)

Using the Cauchy-Schwarz inequality we get:

|ẽ[i]| ≤ ∥R̃Tui∥2

∥∥∥∥∥∥
 s− s′

e− e′

∥∥∥∥∥∥
2

(5.22)

Using ∥A∥2 = σmax(R̃T ), and the definition of Xg (Definition 5.2.7), then Eq. (5.20) and
the assumption on σmax(R) we obtain:

|ẽ[i]| ≤ σmax(R̃T )× (2rmax) < q

2 (5.23)
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Now, if we write for all i ∈ [N ], s̃[i] = ∑k−1
j=0 2j s̃[i]j, with for all j, s̃[i]j ∈ {0, 1}

(we also use the same notation for ẽ), we can prove, following the same path as the
InvertSmallGadget algorithm that ∀i, j, s̃[i]j = 0. Let i ∈ [n]. If we consider only the
line l := (i − 1)k + k of Gs̃ + ẽ = 0, we obtain 2k−1s̃ + ẽ[l] = q

2 s̃[i]0 + ẽ[i] mod q = 0.
Since ẽ[l] ∈ (− q

2 ,
q
2), we cannot have s̃[i]0 = 1, so s̃[i]0 = 0. We can then iterate the same

process for m = 1 . . . k − 1 with the line l := (i− 1)k + (k −m) to show that s̃[i]m = 0,
i.e. s̃ = 0, which concludes the proof of the injectivity of gA. Because this proof follows
exactly the algorithm MP.Invert, it is easy to see using the same argument that this
algorithm correctly inverts any y = As + e with (s, e) ∈ Xg.

We prove now the second part of the theorem. Because R is sampled according to a
discrete Gaussian of parameter αq, so according to [MP12, Lem. 2.8], this distribution is
0-subgaussian, and therefore we can apply [MP12, Lem. 2.9] with, for example, t =

√
N/π

(we divide by π just to simplify the probability, and to transform the ≤ into a <). So
with probability 1− 2 exp(−πt2) = 1− 2eN ,

σmax(R) ≤ C × αq × (
√
Nk +

√
2N +

√
N

π
) < C × αq ×

√
N(
√
k +
√

2 + 1)

To conclude the proof, we inject this equation inside Eq. (5.20) and use Eq. (5.27).

We have now all the background necessary to build our function.

5.3 Function Construction and Analysis

5.3.1 Construction

In this section, we will explain how to derive a δ-GHZH capable family. See the Section 5.1
to get an intuitive explanation of our method. In the following, MP.Gen and MP.Invert are
the functions defined in [MP12] (to, respectively, generate a couple public key/trapdoor
(A,R) and to invert the function gA(s, e) := As + e). Details are in Section 5.2.3.

Definition 5.3.1. For the parameters P := (k,N, α, rmax, n,X ) with (k,N, n, rmax) ∈ N,
0 < α < 1, X ⊆ ZNq ×ZM+n

q where q := 2k and M := N(1 + k), we define in Algorithm 3
the algorithms GenP , InvertP , EvalP (to compute fk) and h. We use d0 ∈ {0, 1}n ⊆ Znq
(same for d), s0 ∈ ZNq , e0 ∈ ZMq , (s, e) ∈ X , c ∈ {0, 1}, A ∈ Z(M+n)×N

q and R is the
trapdoor obtained via the [MP12] algorithm.
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Algorithm 3 Definition of the δ-GHZH capable family
GenP(1λ,d0)

1 : (Au,R)← MP.Gen(1λ)
2 : Al

$← Znq

3 : A :=
[

Au

Al

]
4 : s0 ← DN

Z,αq

5 : e0 ← DM+n
Z,αq

6 : y0 := As0 + e0 + q

2

[
0M

d0

]
7 : k := (A,y0)
8 : tk := (R,d0, s0, e0,A)
9 : return (k, tk)

InvertP(tk := (R,d0, s0, e0,A),y)

1 :
[

yu ∈ ZMq
yl ∈ Znq

]
:= y;

[
Au

Al

]
:= A

2 : (s, eu)← MP.Invert(R,A,yu)
3 : if s = ⊥ then return ⊥ fi
4 : d := RoundModq (yl −Als)

5 : e :=
[

eu
yl −Als− d

]
6 : s′ := s− s0; e′ := e− s0

7 : if (s, e) /∈ X or (s′, e′) /∈ X then
8 : return ⊥ fi
9 : return ((s, e, 0,d), (s′, e′, 1,d⊕ d0))

EvalP(k := (A,y0), x := (s, e, c,d)) =: fk(x)

1 : return As + e +
[

0M

d

]
+ c× y0

h(x := (s, e, c,d))

1 : return d

5.3.2 Analysis

In the rest of the section, we will prove that we can find appropriate set of parameters to
implement this construction and obtain a negl(λ)-GHZH capable family.

We derive now conditions to check that a function is δ-2-to-1 and has the XOR
property explained in Definition 4.2.1. Note that we do a worse case analysis to compute
δ (so in average δ may be smaller than what we actually compute) in order to also deal
with an adversarial scenario in which fk is maliciously sampled: while this does not
make a lot of sense right now, it will turn out to be useful in Chapter 7 when defining
NIZKoQS to define a function H.CheckTrapdoor. Note that you can refer to Figure 5.3a
in order to have a graphical representation of the different parameters used in the rest of
this section (the need for rsafe is depicted in Figure 5.3b).
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X

µ αq
√
N +M + n

µ
√
N +M + n

rsafe

rmax

αq
√
N +M + n (a) Graphical representation of the parameters. The

vector (s0, e0) is sampled according to a very small
Gaussian DN+M+n

Z,αq and its norm is with over-
whelming probability smaller than αq

√
N +M + n

(smaller red circle). The bigger green circle of radius
rmax corresponds to the space in which gA can be
decrypted. The non-hatched part, delimited by the
circle of radius rsafe, delimits the space in which the
two preimages have the property that s′ = s−s0 and
e′ = e− e0. The set in which we define our input is
X = X■µ, the hypercube of “radius” µ (it is easy to
create a uniform superposition on a hypercube).

A
s
0

e0

As e

A
s
′′

e′′

As
′

e′

(b) Illustration of the issue if we use
rmax instead of rsafe: the true preimage
(s′, e′) may not be such that s′ = s−s0
and e′ = e − e0 (here this “wanted”
preimage is denoted (s′′, e′′)), which is
required for the correctness.

Figure 5.3: Graphical representation of the parameters and of the potential issues when
using rmax in place of rsafe.

Lemma 5.3.2 (Conditions for fk to be δ-2-to-1). Let P be like in Definition 5.3.1. We
define rsafe = rmax − αq

√
N +M + n, X + (ŝ0, ê0) := {(s + ŝ0, e + ê0) | (s, e) ∈ X } and

δ := 1−min
{
|X ∩ (X + (ŝ0, ê0))|

|X |∣∣∣ (ŝ0, ê0) ∈ ZNq × ZM+n
q ,

∥∥∥∥∥∥
 ŝ0

ê0

∥∥∥∥∥∥
2

≤ αq
√
N +M + n

 (5.24)

Let s0 ∈ ZNq , e0 ∈ ZM+n
q , d0 ∈ {0, 1}, Â ∈ ZN×Nq , Al ∈ Zn×nq and R =

[
R1 R2

]
∈

ZNk×2N
q . We define as before:

Au :=
 Â

G−R2Â−R1

 A :=
 Au

Al

 ∈ Z(M+n)×N
q (5.25)

together with y0 := As0 + e0 + q
2

 0M

d0

 and k := (A,y0).
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If
√
σmax(R)2 + 1 ≤ q

4rmax
,
∥∥∥∥∥∥
 s0

e0

∥∥∥∥∥∥
2

≤ αq
√
N +M + n, and

X ⊆
(s, e) ∈ ZNq × ZM+n

q

∣∣∣∣∣∣
∥∥∥∥∥∥
 s

e

∥∥∥∥∥∥
2

≤ rsafe

 (5.26)

then the function fk(x) described in Definition 5.3.1 is δ-2-to-1, trapdoor, and for any y
having exactly two preimages x and x′, we have x ̸= x′, h(x)⊕ h(x′) = d0.

On the other hand, if (k, tk) is sampled according to Gen(1λ,d0), if Eq. (5.26) is true,
and if: √(

C × αq ×
√
N(
√
k +
√

2 + 1)
)2

+ 1 ≤ q

4rmax
(5.27)

then with overwhelming probability on N , the function fk is δ-2-to-1, trapdoor, and for
any y having exactly two preimages x and x′, we have x ̸= x′, h(x)⊕ h(x′) = d0.

Proof. Let us first prove that for all c ∈ {0, 1}, the function fk(·, ·, c, ·) is injective. Let
c ∈ {0, 1}, and s, e,d, s′, e′,d′ be such that fk(s, e, c,d) = fk(s′, e′, c,d′). Then, if we
consider only the upper part of this equation (and denote eu the upper part of the vector
e), we get Aus + eu + c × y0,l = Aus′ + e′u + c × y0,l, i.e. Aus + eu = Aus′ + e′u. But
because

√
σmax(R)2 + 1 ≤ q

4rmax
and due to the condition on X given in Eq. (5.26) and

the fact that rsafe ≤ rmax, according to Lemma 5.2.10 the function (s, e)→ Aus + e is
injective. So s = s′ and eu = e′u. Now, we focus on the lower part of the above equation:
we have Als + el + q

2d + c× y0,l = Als′ + e′l + q
2d′ + c× y0,l. Because s = s′, we obtain

el + q
2d = e′l + q

2d′. Because 1 ≤
√
σmax(R) + 1 < q

4rmax
, we have rmax <

q
4 . Therefore,

we get for all i, |el[i]| < q
4 , so RoundModq(el[i] + q

2d[i]) = RoundModq(e′l[i] + q
2d′[i]),

i.e. d[i] = d′[i]. So d = d and therefore we also get el = e′l: the function fk(·, ·, c, ·) is
injective.

Therefore, fk has at most two preimages, one for c = 0 and one for c = 1. We
prove now that fk(s, e, 0,d) = fk(s′, e′, 1,d′), iff (s′, e′,d′) = (s − s0, e − e0,d ⊕ d0).
One implication is trivial: if (s′, e′,d′) = (s− s0, e− e0,d⊕ d0) then because q is even,
fk(s, e, 0,d) = fk(s′, e′, 1,d′). We prove now the second implication. By definition of fk,
if we consider again the upper part of the equation and replace y0 by its definition, we
have Aus + eu = Au(s′ + s0) + (e′u + e0,u). But the triangle inequality gives:∥∥∥∥∥∥

 s′ + s0

e′u + e0,u

∥∥∥∥∥∥
2

≤
∥∥∥∥∥∥
 s′

e′u

∥∥∥∥∥∥
2

+
∥∥∥∥∥∥
 s0

e0,u

∥∥∥∥∥∥
2

≤ rsafe + αq
√
N +M + n = rmax
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Therefore, we can use again the injectivity property given in Lemma 5.2.10, which
gives (s, eu) = (s′ + s0, e′ + e0,u). We can now analyse the lower part of the equation:
Als + el + q

2d = Al(s′ + s0) + (e′l + e0,l) + q
2(d′ + d0). Because s = s′ + s0 and q is

even, we have el + q
2d = (e′l + e0,l) + q

2(d′ ⊕ d0). Using again the triangle inequality, we
prove the same way that ∥e′l + e0,l∥2 <

q
2 . As before, by rounding the previous equation

using RoundModq, we obtain d = d′ ⊕ d0 and el = e′l which concludes the proof. In
particular, if x and x′ are the two preimage, we have h(x)⊕ h(x′) = d⊕ d′ = d0. We
remark that this proof follows exactly the algorithm Invert, therefore the correctness of
Invert follows quite directly and thus the function is trapdoor.

Now, we prove that the function fk is δ-2-to-1. The total number of elements in the
domain of fk is 2|X | × 2n. Let (s, e) ∈ X and d ∈ {0, 1}n. Then, using the result proven
above, fk(s, e, 0,d) has a second preimages (s−s0, e−e0, 1,d⊕d0) iff (s−s0, e−e0) ∈ X ,
i.e. iff (s, e) ∈ X + (s0, e0). So the number of elements x such that |f−1

k (fk(x))| = 2 is
equal to 2|X ∩ (X + (s0, e0))|2n, therefore if we define:

δk := 1− 2|X ∩ (X + (s0, e0))|2n
2|X |2n = 1− |X ∩ (X + (s0, e0))|

|X | (5.28)

this function is δk-2-to-1. But
∥∥∥∥∥∥
 s0

e0

∥∥∥∥∥∥
2

≤ αq
√
N +M + n, so by definition of δ, δk ≤ δ.

So fk is also δ-2-to-1.
To prove the last part of the theorem, we use Eq. (5.27) and Lemma 5.2.10: with

overwhelming probability (on N),
√
σmax(R)2 + 1 < q

4rmax
. Moreover, because

 s0

e0

 is

sampled according to DN+(M+n)
Z,αq , we get, using6 Lemma 5.2.3, that with overwhelming

probability (on N +M + n):
∥∥∥∥∥∥
 s0

e0

∥∥∥∥∥∥
2

≤ αq
√
N +M + n. We can now end the proof

using the first (already proven) part of the theorem.

Note that we did not yet give an explicit definition of X . The most natural way to
define X may be to define it following Eq. (5.26) as:

X• :=
(s, e) ∈ ZNq × ZM+n

q

∣∣∣∣∣∣
∥∥∥∥∥∥
 s

e

∥∥∥∥∥∥
2

≤ rsafe

 (5.29)

However, for our protocol to work, one needs to be able to create quantumly a uniform
superposition over all elements in X . A first naive method would be a rejection sampling

6Note that the original lemma applies to Gaussian distributions that are not reduced modulo q, but
reducing the Gaussian distribution modulo q can only decrease the length of the vector.
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method (see Remark 4.2.2) by creating a uniform superposition on the hypercube of
length 2rsafe (see later how to do) and rejecting if the vectors have length bigger than rsafe.
Unfortunately, this method is inefficient as the probability of not rejecting is negligible
when N tends to the infinity. While some more efficient methods may exist, it will be
easier to focus rather on X being an hypercube.

Definition 5.3.3. For any (µ,N,M, n) ∈ N4, we define the hypercube X■µ as:

X■µ :=
(s, e) ∈ ZNq × ZM+n

q

∣∣∣∣∣∣
∥∥∥∥∥∥
 s

e

∥∥∥∥∥∥
∞

≤ µ

 (5.30)

Remark 5.3.4. It is now easy to sample from X■µ: we can do a rejection sampling as
explained above, except that we proceed coordinate per coordinate (this is much more
efficient than doing a rejection sampling on the final high dimensional state): if we use
the binary two’s complement notation, we apply Hadamard gates on ⌈log2(2µ + 1)⌉
qubits, and use an auxiliary qubit to check if the state is projected on the superposition
of elements having size ≤ 2µ+ 1 (this should happen with probability 2µ+1

2⌈log2(2µ+1)⌉ ≥ 1/2).
If the test passes, we add |0⟩ “significants qubits” until having k = log2(q) qubits, and
run the quantum unitary that substracts µ modulo q. We repeat until having N +M +n

successful projections (this require therefore O(N +M + n) samplings). Moreover, we
can even get completely rid of the rejection sampling if we slightly change the definition
of X■µ and if we make it less symmetric by asking that there exists k′ ∈ N such that

for all i,
 s

e

[i] ∈
[
−2k

′
, 2k

′
− 1

]
. The superposition procedure is the same except that

we work on k′ + 1 qubits, and we do not need the rejection sampling. However this
notation slightly complicates the computations with no clear benefit (if simplifies slightly
the sampling part, but it may decrease the value of δ since the term 2k

′
must be a power

of 2), so for simplicity we will keep our initial notation. Note also that in the following,
for the sake of simplicity we won’t try to give tight bounds.

The following lemma will be useful to bound δ when X = X■µ.

Lemma 5.3.5. Let (N,M, n, µ) ∈ N4, X = X■µ, α ∈ (0, 1), δ be as in Eq. (5.24) and
µ′ :=

⌊
µ− αq

√
N +M + n

⌋
. Then if µ′ ≥ 0:

δ ≤ 1−
(

2µ′ + 1
2µ+ 1

)N+M+n

≤ (αq + 1)(N +M + n)3/2

µ+ 1/2 (5.31)
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Proof. Let (s, e) ∈ X■µ and (ŝ0, ê0) ∈ ZNq ×ZM+n
q such that

∥∥∥∥∥∥
 ŝ0

ê0

∥∥∥∥∥∥
2

≤ αq
√
N +M + n.

Then, (s, e) ∈ X■µ + (ŝ0, ê0) iff (s − ŝ0, e − ê0) ∈ X , i.e. iff
∥∥∥∥∥∥
 s− ŝ0

e− ê0

∥∥∥∥∥∥
∞

≤ µ. If we

assume that
∥∥∥∥∥∥
 s

e

∥∥∥∥∥∥
∞

≤ µ′ (this will not be super tight, but it is good enough for our

analysis), then∥∥∥∥∥∥
 s− ŝ0

e− ê0

∥∥∥∥∥∥
∞

≤
∥∥∥∥∥∥
 s

e

∥∥∥∥∥∥
∞

+
∥∥∥∥∥∥
 ŝ0

ê0

∥∥∥∥∥∥
∞

≤
∥∥∥∥∥∥
 s

e

∥∥∥∥∥∥
∞

+
∥∥∥∥∥∥
 ŝ0

ê0

∥∥∥∥∥∥
2

≤ µ (5.32)

Therefore, X
■µ

′ ⊆ X■µ ∩ (X■µ + (ŝ0, ê0)). So |X■µ ∩ (X■µ + (ŝ0, ê0))| ≥ |X■µ
′| = (2µ′ +

1)N+M+n, and because |X■µ = (2µ+ 1)N+M+n|, we get:

δ ≤ 1−
(

2µ′ + 1
2µ+ 1

)N+M+n

= 1−
(

1 +
(
−1 + 2µ′ + 1

2µ+ 1

))N+M+n

≤ 1−
(

1 + (N +M + n)
(
−1 + 2µ′ + 1

2µ+ 1

))
(Bernouilli’s inequality)

= (N +M + n)
(

1− 2µ′ + 1
2µ+ 1

)

≤ (N +M + n)
(

1− 2µ− 2αq
√
N +M + n+ 3

2µ+ 1

)
(Remove ⌊·⌋)

= (N +M + n)
(
αq
√
N +M + n+ 1
µ+ 1/2

)

≤ (αq + 1)(N +M + n)3/2

µ+ 1/2

We can derive now a more simple set of conditions on the parameters ensuring that
the function created from these parameters is δm − GHZHcapable.

Lemma 5.3.6 (Conditions on parameters). Let λ ∈ N be a security parameter, let (k, n) ∈
N and α ∈ (0, 1) be parameters that depend on λ, and C ≈ 1√

2π (see Lemma 5.2.10). We
define N := λ, q = 2k, M := N(1 + k),

rmax := q

4
√(

C × αq ×
√
N(
√
k +
√

2 + 1)
)2

+ 1
(5.33)

rsafe := rmax − αq
√
N +M + n (5.34)

µ :=
⌊

rsafe√
N +M + n

⌋
(5.35)
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X := X■µ (5.36)

δm := (αq + 1)(N +M + n)3/2

µ+ 1/2 (5.37)

Then, if
⌊
µ− αq

√
N +M + n

⌋
≥ 0, the construction given in Definition 5.3.1 is δm −

GHZHcapable (see Definition 4.2.1) assuming the security of decision-LWEq,DZ,αq
. More-

over, if we define:

α0 := 1
q

√
(αq)2 − ω(

√
logN)2 (5.38)

γ := Õ

(
N

α0

)
(See constants in [PRS17])

and if α0q > 2
√
N , then the construction is secure if GapSVPγ is hard. In particular,

we are interesting in the regime in which δm is negligible (correctness) and in which
γ = Õ(2N

ε

) for some ε ∈ (0, 1/2) (security).

Proof. For the first part of the theorem, the efficient generation and computation prop-
erties are trivial to check. The fact that the function is trapdoor and the property on
the XOR is a direct consequence of Lemma 5.3.2. The δm-2-to-1 property comes from
Lemma 5.3.2 and Lemma 5.3.5. The method to efficiently create a uniform superposition
of elements in X is given in Remark 5.3.4.

To prove the indistinguishability property on game IND-D0, we assume that there
exists an adversary A that can win this game with a non-negligible advantage. Because A

has only access to
A,y0 = As0 + e0 + q

2

 0M

d(c)
0

, we can use A to break the decision-

LWE problem: given a challenge (A′,y), we run the adversary and send to A the couple

(A′,y + q
2

 0M

d(c)
0

). If the guess c̃ of A equals c, we guess that we get the non-uniform

distribution normal-As,DZ,αq
(i.e. the distribution where s is also sampled according to

DZ,αq), otherwise we guess that we get the uniform distribution U . We remark that

if y is a vector chosen uniformly at random, then the distribution of y + q
2

 0M

d(c)
0

 is

statistically uniform. So in that case, A cannot guess c with probability better than
1/2. Now, if y is sampled from normal-As,DZ,αq

, then A must guess correctly the value of
c with non-negligible advantage, otherwise it means that we can distinguish a matrix
obtained by MP.Gen from a uniform matrix (we already know it is not possible, see
Lemma 5.2.8). Therefore, the probability p of guessing the correct distribution is:

p ≥ 1
2 ×

1
2 + 1

2

(1
2 + negl(λ)

)
= 1

2 + negl(λ) (5.39)
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which is absurd since we assumed the hardness of LWE. Note that we do not exactly have
an instance of decision-LWE, because it is an instance of the normal version of decision-
LWE (s0 is sampled according to the same distribution as e0). However, Lemma 5.2.6
shows that the normal problem is harder, and keeping only K samples can also only
make the problem harder. Therefore, no adversary can win IND-D0 with non-negligible
advantage.

For the second part, if we assume GapSVPγ to be hard, then using Lemma 5.2.4 we
get that decision-LWEq,Dα0q

is also hard (α0q > 2
√
N , and 0 < α0 ≤ α < 1). We can

now discretize the distribution using Corollary 5.2.5 (λ = N) to obtain that decision-
LWEq,DZ,αq

is hard. Indeed, if we assume the existence of an adversary A that can
distinguish with non-negligible advantage the distribution U from As,DZ,αq

for a vector s
chosen uniformly at random, then A has also a non-negligible advantage in distinguishing
As,χ where χ is the marginal distribution of e in Corollary 5.2.5 (otherwise we could
use A to distinguish χ from DZ,αq, which is impossible because they are statistically
negligibly close). But it also means that A can also be used to break LWEq,Dα0q

by first
discretizing Dα0q (it works because the transformation given in Corollary 5.2.5 also maps
the uniform distribution on itself). Since we already prove the security when we assume
the hardness of decision-LWEq,DZ,αq

above, the proof is finished.

5.3.3 Explicit Instantiation of the Parameters

We prove now that there exists an instantiation that fulfills the requirements of Lemma 5.3.6.
Note that for simplicity, we only verify the properties asymptotically. Moreover, we do not
attempt to give any particularly optimized construction (note that there is are tradeoffs
between security, correctness, efficiency, and simplicity of the quantum superposition
preparation circuit).

Theorem 5.3.7 (Existence of a negl(λ)-GHZH capable family). Let ε ∈ (0, 1
2) be a

constant, and λ ∈ N be a security parameter. Let n = poly(λ) ∈ N and N := λ. If we
assume the hardness of the GapSVPγ problem for any γ = Õ(2N

ε

), then there exists a
negl(λ)-GHZH capable family of functions. More precisely, if we define the fixed function
ω(
√

logN) := logN , k := ⌊N ε⌋, q := 2k,

α :=

√
4N + ω(

√
logN)2 + 1
q

(5.40)
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and M, rmax, rsafe, µ,X , δm as in Lemma 5.3.6, the construction given in Definition 5.3.1
is δm-GHZH capable (for sufficiently large7 λ), with δm = negl(λ).

Proof. We just need to check that for sufficiently large λ the properties of Lemma 5.3.6
are respected. Because 1/q = negl(N), it is easy to see that for sufficiently large λ,
a ∈ (0, 1) since α = poly(N)/q. Then, αq >

√
4N + ω(

√
logN)2, so using notation

from Lemma 5.3.6, we directly get α0q > 2
√
N . Moreover, multiplying Eq. (5.40)

by q, we get αq = poly(N), so it means that α0 = poly(N)/q = negl(λ). Therefore
γ = Õ(N/α0) = Õ(

√
Nq) = Õ(

√
N2N

ε

) = Õ(2N
ε

) which is assumed to be hard. Next,
let us study µ and δm. Because αq = poly(n) and q = 1/negl(λ) is superpolynomial, that
rmax is also superpolynomial, and same for rsafe, µ and ⌊µ− αq

√
N +M +N⌋ (we only

subtract or divide by terms that are poly(N)). Therefore, for a large enough λ (= N),
we have ⌊µ− αq

√
N +M +N⌋ ≥ 0. Finally, δm = poly(N)/(µ+ 1/2). But we showed

that µ is superpolynomial, so 1
µ

is negligible, and therefore δm is also negligible, which
ends the proof.

We also derive a similar statement where we only rely on LWE with polynomial
noise ratio. In that case, it is possible to get δ arbitrarily small, but it decreases only
polynomially fast with the security parameter λ.

Remark 5.3.8. There are two possible reasons to base our security on LWE with polynomial
noise ratio: first, this assumption is more standard than the hardness of LWE with
superpolynomial noise ratio. Secondly, it allows us to store the modulus q on a logarithmic
(in λ) number of bits instead of on a polynomial number of bits, which should allow us
to implement quantumly fk more efficiently. On the other hand, the value of δ decreases,
and we need to run a different protocol to generate |+θ⟩ with overwhelming probabilities,
involving multiple quantum evaluation of fk (the function is therefore simpler to evaluate,
but must be evaluated more).

Theorem 5.3.9 (Existence of a δ-GHZH capable based on LWE with polynomial noise
ratio). Let λ ∈ N be a security parameter. Let n = O(λ) ∈ N and N := λ. If we assume
the hardness of the GapSVPγ problem for γ = poly(N), then there exists a δ-GHZH capable

7The function may not be well defined for too small λ because the input set may be empty. For
example, with this instantiation, if we take ε = 1

3 , the function is well defined for N ≥ 7× 105. Moreover,
when N = 6 × 106, we get k = 181 and δm < 2−80. There is surely place for optimisation, but only
existence matters here. Also, it is possible to change slightly the definition of k by adding a constant
term (it won’t change the analysis at all) to allow fk to be defined for smaller values.
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family of functions with δ = Õ
(

1√
λ

) ∞−→ 0. More precisely, if we define the fixed function8

ω(
√

logN) := logN , k := 20 + 4⌈logN⌉, q := 2k,

α :=

√
4N + ω(

√
logN)2 + 1
q

(5.41)

and M, rmax, rsafe, µ,X , δm as in Lemma 5.3.6, the construction given in Definition 5.3.1
is δ-GHZH capable (for sufficiently large λ), with δ = Õ

(
1√
λ

) ∞−→ 0.

Proof. As before, we need to check that for sufficiently large λ the properties of
Lemma 5.3.6 are respected. First, we can check that α0q ≥ 2

√
N : this is a direct

consequence of the definition of α0 and α since

α0q
(5.38)=

√
(αq)2 − ω(

√
logN)2 (5.41)=

√
4N + ω(

√
logN)2 + 1 + ω(

√
logN)2 (5.42)

=
√

4N + 1 > 2
√
N (5.43)

Then, we approximate some terms using the notation f(x) = Θ̃(g(x)) to denote the
fact that there exist k > 0 such that:

lim
x→∞

f(x)
g(x) logk x

<∞ and lim
x→∞

f(x) logk x
g(x) > 0 (5.44)

In particular, if f(x) = f0(x) ± f1(x) where f0(x) = Θ̃(xa), f1(x) = Θ̃(xb) and a > b,
then f = Θ̃(xa).

This simple fact is trivial to prove. We just define k = max(k0, k1) where k0 and k1

are the term k appearing in the Θ̃ definition of both terms. Then

lim
x→∞

f(x)
xa logk x

= lim
x→∞

f0(x)± f1(x)
xa logk x

= lim
x→∞

f0(x)
xa logk x

± lim
x→∞

f1(x)
xa logk x

(5.45)

≤ lim
x→∞

f0(x)
xa logk0 x

± lim
x→∞

f1(x)
xb logk1 x

<∞ (5.46)

similarly,

lim
x→∞

f(x) logk x
xa

= lim
x→∞

(f0(x)± f1(x)) logk x
xa

= lim
x→∞

f0(x) logk x
xa

± lim
x→∞

f1(x) logk x
xa

(5.47)

> lim
x→∞

f0(x) logk1 x

xa
± lim

x→∞
1

xa−b
f1(x) logk2 x

xb
(5.48)

Because a > b and using the assumption, the last term tends to zero and the first
term is greater than 0 so limx→∞

f(x) logk
x

x
a > 0.

8In the expression of k, the 20 plays no particular role and could be removed or changed, it only
allows us to evaluate the function for small values of λ. The 4 on the other hand is important to ensure
that δ converges to 0.
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Similarly, if f(x) = f1(x)f2(x) (using the above notation), f(x) = Θ̃(N (a+b)). Then, we
have:

q = 2k = Θ̃(N4) (5.49)
M = N(1 + k) = Θ̃(N) (5.50)

αq
(5.41)=

√
4N + ω(

√
logN)2 + 1 = Θ̃(

√
N) (5.51)

α0
(5.43)=

√
4N + 1
q

(5.49)= Θ̃(N−7/2) (5.52)

rmax
(5.33)= q

4
√(

C × αq ×
√
N(
√
k +
√

2 + 1)
)2

+ 1

(5.51)= Θ̃(N4)
Θ̃(N)

= Θ̃(N3) (5.53)

rsafe
(5.34)= rmax − αq

√
N +M + n

(5.53)= Θ̃(N3)− Θ̃(N) = Θ̃(N3) (5.54)

µ
(5.35)=

⌊
rsafe√

N +M + n

⌋
(5.54)= Θ̃(N5/2) (5.55)

δm
(5.37)= (αq + 1)(N +M + n)3/2

µ+ 1/2 = Θ̃(
√
N)Θ̃(N3/2)

Θ̃(N5/2)
= Θ̃

(
1√
N

)
(5.56)

µ− αq
√
N +M + n

(5.55)= Θ̃(N5/2)− ‘Θ̃(N) = Θ̃(N5/2) (5.57)

Therefore, for sufficiently large n, we have
⌊
µ− αq

√
N +M + n

⌋ (5.57)
≥ 0, γ = Õ( N

α0
) (5.52)=

poly(N) and δm = Θ̃
(

1√
N

)
, meaning that the probability of not having two preimages

converges towards 0.

5.4 Discussions and Open Questions

In this chapter, we saw constructions that fulfill the requirements needed by our various
QFactory protocols: when relying on LWE with superpolynomial noise ratio, we can
obtain a negl(λ)-GHZH capable family, which is exactly what is required in protocols
described in Sections 4.3 and 4.4. If we prefer to rely on the more standard assumption of
LWE with polynomial noise ratio, we can obtain a δ-GHZH capable family with δ = 1

poly(λ) ,
which is enough for the construction provided in Section 4.6.

However, the open question described in Section 4.7 also apply to the cryptographic
constructions (it is often hard to completely decouple the design of the protocols, the
design of the cryptographic families, and the security proofs). Notably, it would be
particularly interesting to see if revealing to the server the abort bit in the BB84-QFactory
protocol (which translates to revealing of a given y has exactly 2 preimages or not)
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weaken the security of our construction. For more details, we refer to the discussion in
Section 4.7.2.

There is also many more questions concerning the cryptographic constructions. For
instance we may want to rely on different cryptographic hardness assumption than on
lattice-based cryptography. Two others major post-quantum candidates are code-based
and isogeny-based cryptography. I’ve not tried to use isogeny-based cryptography (and
I am not aware of any work that did), but I tried to construct fk using code-based
cryptography. Unfortunately, I was unable to find any working construction9. Intuitively,
what goes wrong in code-based cryptography is that it is hard to find a set of errors
E such that E ≈ E − e0. The problem is that the Hamming distance scales poorly
compared to the L2 norm. More precisely, in code-based cryptography the errors are
typically vectors having many zeros and a few ones (the weight being the number of ones):
so if we define E as the set of errors having weight smaller than k and pick a random
error e inside E, the weight w of e is likely to be very close to k. But if we add/substract
to it a vector e0 of weight w0, the sum has roughly a weight of w + w0. . . which is
typically bigger than k, unless w0 is very small. Unfortunately, if w0 is too small, the
security vanishes, making it hard (impossible?) to find a good balance between security
and correctness using code-based cryptography. Our difficulty to find a code-based
construction for QFactory may actually be linked with the difficulty to find a code-based
Homomorphic Encryption scheme [Bra13, Hal17].

Another important question concerns the efficiency of the construction. For now, our
non-optimized construction is likely to use a very large amount of qubits and it is of
great importance to reduce this amount to make the protocol more accessible (of course,
for the security proof to hold we need enough qubits to make sure it is not classically
simulable). Construction based on LWE with polynomial noise ratio may in particular be
interesting to reduce this cost.

The question of the construction of appropriate cryptographic families also applies for
new potential applications for classical-clients as discussed in Section 4.7.3. As already
shown, in can have some extremely unusual and surprising properties, indicating that
classical-client quantum cryptography may lead to new interesting questions, constructions
and security proofs in classical lattice-based cryptography.

9Of course it does not mean that there is none: also, I tried to find such a construction a long time
ago, while I had a less accurate view on the problem than now. But nevertheless, I still think that
finding a code-based construction would be challenging, if not impossible, and likely to be much less
efficient.
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Impossibility Results in

Composable Security

“People say nothing1 is impossible, but I do nothing1 every day.”

— A. A. Milne, Winnie-the-Pooh

In Chapter 4 we developed a protocol to achieve classical-client Remote State
Preparation (RSP), allowing us to obtain a classical-client blind quantum computing
protocol based on the UBQC protocol. However, all the proofs of security were

derived in the game-based security model, following the spirit of the IND-CPA definition.
Unfortunately, this model of security does not guarantee that our protocol stays secure
when it is used inside other protocols (a new proof of security must be written). It
would therefore be much more interesting to prove the security of QFactory in a compos-
able model—such as the Constructive Cryptography (CC) framework—to save us from
re-proving the security for each new application.

However, we show in this chapter that it is impossible to prove the security of any
classical-client RSP protocol (even noisy ones) in the CC framework. As it, this result does
not rule out the possibility of a secure and composable classical-client UBQC protocol:
it may be possible that a given protocol is not composable but that the usage of this
protocol inside another one gives a composable protocol. Unfortunately, we also prove
that it is impossible to prove the composable security of any protocol that is made of
UBQC where quantum communications are replaced with a classical-client RSP protocol.

1Or was it “RSP”?
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6.1 Quick Overview

In this section we give an informal overview of our approach. As explained in Section 6.2,
in the CC framework the abstract specification of any protocol is characterized by a
resource—an interactive machines with one interface per party—defining its security.
Intuitively, at the end of an RSP protocol Bob gets a quantum state and Alice gets a
description corresponding to this quantum state. So one of the most simple RSP resource
could be:

SZ π
2

θ $← {0, π
4 ,

π
2 ,

3π
4 }

θ |+θ⟩ (6.1)

(We will later generalize significantly this definition, including noisy, leaky or interactive
resources.) We will say that a protocol is an RSPCC protocol if it (computationally)
realizes an RSP resource using a purely classical channel. In term of correctness it means
that these two systems cannot be distinguished by the distinguisher2:

Alice Classical channel Bobθ ... ...
|+θ⟩ ≈ SZ π

2
θ $← {0, π

4 ,
π
2 ,

3π
4 }

θ |+θ⟩ (6.2)

And in term of security, it means that there exists a simulator σ such that these two
systems are indistinguishable (we refer to Section 6.2 for more details on the role of
simulators):

Alice Classical channelθ ... ... ≈ SZ π
2

θ $← {0, π
4 ,

π
2 ,

3π
4 }

σθ |+θ⟩ ... (6.3)

Impossibility of RSPCC protocols. We show in Section 6.3 a wide-ranging limi-
tation to the universally composable guarantees that any RSPCC protocol can achieve.
We prove that if an RSPCC protocol realizes an RSP resource, then this resource is
describable: roughly speaking, this notion measures how leaky an RSP resource is, i.e.
what amount of information about the classical description of the final state can be
extracted by an unbounded malicious server. We emphasize that even if this specific
property is an information-theoretic notion, our final impossibility result also targets
computational security. In this way, it rules out a wide set of desirable resources, even
against computationally bounded distinguishers.

2Technically we should add a filter, but this is not required in this simple example.
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Theorem 6.3.6 (Security Limitations of RSPCC, informal). Any RSP resource, realizable
by an RSPCC protocol secure against QPT distinguishers, must leak an encoded, but
complete description of the generated quantum state to the server.

The importance of Theorem 6.3.6 lies in the fact that it is drawing a connection
between the composability of an RSPCC protocol—a computational notion—with the
statistical leakage of the ideal functionality it is constructing—an information-theoretic
notion. This allows us to use fundamental physical principles such as no-cloning or
no-signaling in the security analysis of computationally secure RSPCC protocols. As one
direct application of this powerful tool, we show that secure implementations of the ideal
resource in Eq. (6.1) give rise to the construction of a quantum cloner, and are hence
impossible.

SZ π
2

θ $← {0, π
4 ,

π
2 ,

3π
4 }

σ Bobθ |+θ⟩ ...
|+θ⟩

Input of the polynomial distinguisher

SZ π
2

θ $← {0, π
4 ,

π
2 ,

3π
4 }

σ Classically emulate Bobθ |+θ⟩ ... θ

Impossible box outputing a classical
description of the state in exponential time

Figure 6.1: Idea of the proof of impossibility of composable RSPCC, exemplified by the
SZπ

2
primitive from Eq. (6.1).

Proof Sketch. While Theorem 6.3.6 applies to much more general RSP resources having
arbitrary behavior at its interfaces and targeting any output quantum state, for simplicity
we exemplify the main ideas of our proof for the ideal resource SZπ

2
(the proof is pictured

in Figure 6.1). The composable security of a protocol realizing SZπ
2

implies, by definition,
the existence of a simulator σ which turns the right interface of the ideal resource into
a completely classical interface as depicted in Eq. (6.3). Running the protocol of the
honest server with access to this classical interface allows the distinguisher to reconstruct
the quantum state |+θ⟩ received by the simulator from the ideal resource. Since the
distinguisher also has access to θ via the left interface of the ideal resource, it can perform
a simple measurement to verify the consistency of the state obtained after interacting
with the simulator. By the correctness of the protocol, the obtained quantum state |+θ⟩
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must therefore indeed comply with θ. We emphasize that this consistency check can be
performed efficiently, i.e. by polynomially-bounded quantum distinguishers.

Since the quantum state |+θ⟩ is transmitted from σ to the distinguisher over a classical
channel, the ensemble of exchanged classical messages must contain a complete encoding
of the description of the state, θ. A (possibly computationally unbounded) algorithm
can hence extract the actual description of the state by means of a classical emulation of
the honest server. This property of the ideal resource is central to our proof technique,
and corresponds to describability.

Having a full description of the quantum state produced by SZπ
2

would allow us
to clone it, a procedure prohibited by the no-cloning theorem. We conclude that the
resource SZπ

2
cannot be constructed from a classical channel only.

Remark 6.1.1. One could attempt to modify the ideal resource, to incorporate such an
extensive leakage, which is necessary as the above proof implies. However, this yields an
ideal resource that is actually not a useful idealization or abstraction of the real world
(because it is fully leaky, i.e. reveals to a malicious server the full classical description of
the state) which puts in question whether they are at all useful in a composable analysis.
Indeed, usually in CC the resources considered are “trivially secure” (i.e. statistically
secure, in the sense that the guarantees that we obtain does not depend on the power
of the adversary), and we can then claim that a protocol is secure because it is (for
any computationally bounded distinguisher) indistinguishable from the information-
theoretically secure resource. Consider for example constructions of composite protocols
that utilize a (non-leaky) ideal resource as a sub-module, say that leaks only the size
of an encrypted message. These constructions require a fresh security analysis if the
sub-module is replaced by any leaky version of it (like a resource leaking a specific
encrypted form of the message), but since the modified resource is very specific and not
trivially secure, it appears that this replacement does not give any benefit compared to
directly using the implementation as a subroutine and then examining the composable
security of the combined protocol as a whole.

Impossibility of composable UBQCCC. The previous impossibility result does not
prevent us from using an RSPCC protocols as a subroutine in other specific protocols—in-
cluding in UBQC—and expect the overall protocol to still construct a useful ideal
functionality. Unfortunately, as we show in Section 6.4, UBQCCC fails to provide the
expected composable security guarantees once classical remote state preparation is used
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to replace the quantum channel. This holds even if the distinguisher is computationally
bounded.

Theorem 6.4.9 (Impossibility of UBQCCC, informal). No RSPCC protocol can replace
the quantum channel in the UBQC protocol while preserving composable security.

Proof Sketch. The proof proceeds in three steps. Firstly, we realize that the possibility
of a composable UBQCCC protocol, which delegates arbitrary quantum computation,
can be reduced to the possibility of any composable UBQCCC protocol that delegates
single-qubit quantum computation. The latter protocol is much simpler to analyse. Next,
we show that the single-qubit resource corresponding to UBQCCC can be seen as an
RSP resource. This step allows us to employ the toolbox we developed for our previous
result (Theorem 6.3.6). Finally, we show that the existence of a simulator for such an
RSP functionality (that leaks the classical description, even in the form of an encoded
message) would violate the no-signaling principle. Therefore, via this series of reduction,
we show that the UBQC functionality, as defined in [DFP+14], cannot be realized by the
combinaison of a classical-client RSP protocol and the UBQC protocol.

Therefore, the two above results show that our QFactory protocols (GHZ-QFactory,
BB84-QFactory, Zπ

4 -QFactory. . . ) and our UBQCCC protocol could not have been proven
secure in this composable framework. But it does not mean that they are not secure:
the game-based proofs are still valid. Note also that an intermediate model known as
standalone also exists, allowing only sequential composition: it is an open question of
whether it is possible to prove the security of any RSPCC protocol in this framework.
Our impossibility results also do not rule out the possibility of other composable blind
quantum computing protocols. Notably, it may be possible that the verifiable protocol
VBQC of [FK17] does not suffer from this issue3.

6.2 The Constructive-Cryptography Framework

We describe now the Constructive-Cryptography Framework. Compared to game-based
security, composable security takes a different approach to phrase the guarantees achieved
by a protocol. Loosely speaking, a protocol is composable when it is shown to be “secure”

3Note that even if [GV19] proves the security of a classical-client VBQC (with polynomial security),
they use an additional assumption called Measurement Buffer (discussed later in Remark 6.3.11) which
re-creates quantum communication between the simulator and the distinguisher. Therefore, this is not
in contradiction with the results and questions presented in this chapter.
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in an arbitrarily adversarial environment4. There are several approaches which provide
a general framework to study this cryptographic definitions [Can01, BPW03, MR11,
Mau12, Unr10], but we will focus in this work on Constructive Cryptography (CC) (also
known under the term Abstract Cryptography (AC)) [MR11, Mau12].

Note on the Universal Composability framework. CC is very close to the
Universal Composability (UC) framework [Can01] which is more famous in classical
cryptography. However, UC takes a “bottom-up” approach (i.e. it first defines Turing
Machines, how they communicate formally, and finally defines the security) and is
therefore not suitable for quantum cryptography since it was designed for classical Turing
Machines from the beginning.

On the other hand, CC takes a “top-down” approach, i.e. it abstracts the notion
of party and only defines a set of properties that the model of computation used by
the parties must respect in order to obtain security. It is then possible to implement
the model of computation of the parties using Turing Machines, but also using QPT
interactive machines, unbounded machines, or even model protocol involving time such
as relativistic protocols. This abstraction also allows clearer proofs since we do not need
to go too deep into the low-level description of the parties.

Note also that a quantum version of UC was developed in [Unr10]. Because of the
reasons mentioned above, combined with the fact that the results of interest for this
work was stated in CC [DFP+14, DK16], the choice of using CC was more natural. Note
however that we expect our results to also apply to Quantum UC: when considering only
two QPT parties, both frameworks are mostly equivalent.

Introduction to Constructive Cryptography. In CC—and more generally in
simulation-based frameworks—the security of a protocol is defined by saying that a “real
world” (basically running the protocol) is indistinguishable from an “ideal world”, which
runs an idealized, trivially secure version of the protocol. This means that the real world
is at least as secure as the ideal world, since if an attack were possible in the real world,
then it would have been possible to apply this same attack in the ideal world (otherwise
it would be easy to distinguish both worlds). . . which is impossible because the ideal
world is trivially secure. We will now formalize this first intuition.

The basic elements of CC are systems: objects with well-distinguished and labeled
interfaces. For instance, in a two-party protocol, we can define I = {A,B} as the two

4Of course, the environment may still be limited to “efficient” computations.
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interfaces accessible to the first and the second party: each interface represents the actions
that are accessible by that agent. The system uses interfaces to exchange information
with the outside world and/or other systems, and can internally do some computations
(depending on how we instantiate CC, it could be unbounded or restricted to PPT or
BQP computations). Systems are grouped in distinct classes: resources, converters and
distinguisher.

Resources Φ are the central elements of CC5. They have three (related) roles: first
they are used at the abstract level to specify the relevant properties of a protocol (in
term of security and correctness). Secondly, they can be used to model the fundamental
requirements of a protocol, like channels. Thirdly, they will be used as a container to
the actual protocol to describe the real world. For instance, we can define the following
three resources6 having three interfaces I = {A,B,E}, where A is represented on the
left of the resource, B on the right, and E behind:

RAuth
m m

m

RKey

k ← {0, 1}n
k k RSec

m m

|m|
(6.4)

It is easy to see that RAuth corresponds to an authenticated channel (readable but
unalterable by Eve), RKey is a key distribution mechanism (not even readable by Eve),
and RSec is a secure channel (unalterable by Eve, who can learn at most the size of the
transmitted message). Note how the security properties are trivially derivable from the
resources: a resource will be used as the definition of the security of a protocols. You can
also see that the security properties we derived above are true in an information-theoretic
sense, meaning that we do not need to bound the power of Eve to derive these statements
(of course, the final protocol may be only computationally secure). Note also that it is
possible to group multiple resources into a bigger resource by merging their interfaces
(the precise addressing mechanism is not of interest at this level of abstraction, we just
need to know that there exists a parallel composition operation ∥ : Φ× Φ→ Φ that has

5They roughly correspond to Ideal Functionalities in UC.
6When the operations done by the resource are simple enough, we write the computation directly on

the wires instead of inside the resource.
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some properties described later):

R := RKey∥RAuth =

RKey

k ← {0, 1}n

RAuth

k k

m m

m

(6.5)

Converters Σ, on the other hand, are systems limited to two interfaces, an inside one
(typically attached to a resource, potentially grouping multiple sub-resources) and an
outside one (in order to take the inputs of the protocol and deliver outputs). A converter
represents the actions performed by a given party and the name reflects the fact that a
converter converts the functionality of the resource’s interface it is attached to into a
new functionality on the outside. A resource having a converter attached to one of its
interfaces continues to qualify as a resource. For instance, we can attach to the above
resource two converters πA (playing the role of Alice) and πB (playing the role of Bob)
to obtain a new resource S doing the One-Time-Pad (OTP) encryption protocol (it will
play the role of the “real world”):

S := πAAπ
B
BR =

RKey

k ← {0, 1}n

RAuth

m k k

k⊕m a:=k⊕m

k⊕m

a⊕k
=m

πA πB (6.6)

Usually, if πA ∈ Σ is a converter and R a resource, we write πiAR to denote new
resource where the inner interface of πA is connected to the interface i of R, the outer
interface of πA being the new interface i (or we just use a graphical diagram as we did
until now to keep simple notations). This gives a star-shaped topology where the resource
is at the center and a chain of converters is attached to each interface, resulting in a
new resource with the same set of interfaces. In this theses we will often have only two
interfaces I = {A,B}, so we will write the converter on the left of the resource when it
is plugged on the interface A, and we will put the converter on the right of the resource
when it is plugged on the interface B: πAAR is denoted πAR while πBAR is RπA.

The abstraction used by the Constructive Cryptography framework allows us to
instantiate resources, converters and distinguishers (see below) in different manners
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(they can be unbounded, PPT or QPT interactive machines, or even be more complex
to describe relativistic protocols). For the security properties to apply, we just need to
have some general properties on them. Notably we require (Φ,Σ) to be a cryptographic
algebra [Mau12, Def. 1] for the interfaces I : resources Φ must be equipped with a parallel
composition ∥ : Φ×Φ→ Φ and a mapping Σ×Φ×I → Φ (corresponding to our notation
πiAR for πA ∈ Σ, i ∈ I and R ∈ Φ) defining the resource obtained when converter πA is
attached to the interface I of R. Moreover for any resource R, converters πA, πB and
interfaces i ̸= j we must have πiAπjBR = πjBπ

i
AR (composition order does not matter),

and there should exist a special neutral converter 1 ∈ Σ such that 1iR = R.

To define composition of protocols, it will also be useful to define a sequential
composition law ◦ : Σ × Σ → Σ and a parallel composition law ∥ : Σ × Σ → Σ on
converters such that (π2 ◦ π1)iR := πi2(pii1R) and (π1∥π2)i(R∥S) := (πi1R)∥(πi2S)7 for
all i,R,S , π1, π2.

A simulator is a converter used when doing the security proof in order to define our
ideal world (which is supposed to be indistinguishable from the real world). For instance,
here we would like to say that the OTP protocol realizes the secure channel RSec. So we
can define our simulator σ and attach it to RSec as follows:

RSec

σ

c← {0, 1}|m|

m m

|m|

c

(6.7)

A filter (usually denoted ⊢) is a special converter used to force a honest behaviour
on a given interface of a resource. They are usually used to prove the correctness of
a protocol, as they describe what can be done in an honest run. They are removed
to provide full power to a cheating adversary or to a simulator. Because an honest
evedropper should not learn any information about the transmitted message, in our
example the simulator is simply blocking all incoming messages on Eve’s interface (there
is no need for a simulator on the other interfaces since during an honest protocol we do

7We do not need to define the notation (π1∥π2)T for resources T that are not of the form T = R∥S .
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want to send and receive m and do not want to filter it):

RSec

⊢

m m

|m| (6.8)

Sometimes, in order to keep the filter simple, the functionality accepts as a first
message a bit c which says if the party wants to behave honestly (c = 0) or maliciously
(c = 1). That way, the filter ⊢c=0 (or simply ⊢) just sends c = 0 to the resource, and
then forwards all the messages between it’s inner and outer interface.

A distinguisher8 is a system that helps to quantify the distance between resources.
Given an n-interface resource R, a distinguisher D ∈ D outputs a bit determined after
interacting with the n interfaces of R (we denote by DR this random variable). You
can imagine that this bit is set to, say, 0 when the distinguisher thinks it is interacting
with the first resource, and 1 otherwise. With our example, this can be drawn as follows:

DS :=

RKey

k ← {0, 1}n

RAuth

D

m k k

k⊕m a:=k⊕m

k⊕m

a⊕k
=m

0/1

πA πB

(6.9)

Then the distance (actually it is a pseudo-metric) between two resources R and S
is defined by the best advantage ε a distinguisher D ∈ D can achieve when trying to
determine which resource it is interacting with. This leads to the following definition:

R ≈ε S :⇐⇒ ∆D(R,S) ≤ ε (6.10)

with ∆D(R,S) = supD∈D ∆(DR, DS), where ∆(DR, DS) is the statistical distance
between the distributions DR and DS . Note that ∆D defines a pseudo-metric: ∀ε >
0, (R,S , T ) ∈ Φ3,

∆D(R,R) = 0 (6.11)
∆D(R,S) = ∆D(R,S) (6.12)
∆D(R,S) ≤ ∆D(R, T ) + ∆D(T ,R) (6.13)

8In UC the distinguisher corresponds to the environment.
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For the security proofs to hold, we expect this metric to be compatible [Mau12, Def. 2] with
the cryptographic algebra (Φ,Σ), which means that we expect to have ∆D(R∥R′,S∥S ′) ≤
∆D(R,S) + ∆D(R′,S ′) and ∆D(πiAR, πiAS) ≤ ∆D(R,S) for all resources R,R′,S ,S ′,
converter πA and interface i. This is always the case if distinguishers can “absorb”
converters and resources [Mau12, Lem. 1]: DΣi ⊆ D, D[ ·∥Φ] ⊆ D and D[Φ∥· ] ⊆ D (it
will always be the case).

We now have all the tools to describe how a protocol (specified as a tuple of converters,
one converter per party) using internally a fundamental resource R can securely construct
an (ideal) resource S . Informaly, we want to check two properties: correctness and
security. For the correctness, we just need to verify that the honestly performed protocol
is indistinguishable from the filtered resource S (in our case, the honest behavior of Eve
is to forget everything):

RKey

k ← {0, 1}n

RAuth

m k k

k⊕m a:=k⊕m

k⊕m

a⊕k
=m

πA πB

≈ε

RSec

⊢

m m

|m| (6.14)

For the security, we need to check that for each subset of potentially malicious party,
if we remove them from the protocol, there exists simulators (one per interface of the
resource S) that make the two worlds indistinguishable. In our example, only Eve can
be malicious, so it gives:

RKey

k ← {0, 1}n

RAuth

m k k

k⊕m a:=k⊕m

k⊕m

a⊕k
=m

πA πB ≈ε

RSec

σ

c← {0, 1}|m|

m m

|m|

c

(6.15)

The two above equations can be checked easily by realizing that the input-output
distributions are statistically identical (the probability of observing a given string on
Eve’s interface is even independent of the input m). It means that the OTP protocol is
statistically secure, and realizes a secure channel when implemented over an authenticated
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channel. The intuition behind this is that if no distinguisher can know whether it is
interacting with an ideal resource or with the real protocol, then it means that any attack
done in the “real world” can also be done in the “ideal world”. Because the ideal world is
secure by definition, so is the real world. To give a more concrete example, if it were
possible to extract m from Eve’s interface in the OTP protocol, it would also be possible
to extract m from Eve’s interface in the ideal world—which corresponds to the output
of the simulator—otherwise it would be easy to distinguish both world by checking if
the input m corresponds to the extracted m. But this is of course impossible since
the simulator only has access to the size of m, and therefore does not output enough
information to recover m.

We also emphasis that even if this example showcases statistical security, the same
argument also applies for computationally secure protocols (we could replace k ⊕ m

with the encryption of m, and ask to πB to decrypt the message). The only difference
would be that Eq. (6.15) would be true only for QPT distinguishers: it would then be
computationally hard to distinguish a computationally secure protocol from a statistically
secure resource.

We give now the more formal definition, directly stated for the special case we are
interested in in the rest of this thesis, namely in two-party protocols between a client
A and a server B, where A is always considered to be honest. The definition can be
simplified as follows:

Definition 6.2.1 ([MR11, Mau12]). Let I = {A,B} be a set of two interfaces (A being
the left interface and B the right one), and let R,S be two resources. Then, we say that
for the two converters πA, πB, the protocol π := (πA, πB) (securely) constructs S from R
within ε, or that R realizes S within ε, denoted:

R π−−→
ε

S (6.16)

if the following two conditions are satisfied:

1. Availability (i.e. correctness):

πARπB ≈ε S ⊢ (6.17)

2. Security: there exists σ ∈ Σ (called a simulator) such that:

πAR ≈ε Sσ (6.18)

As promised, it is now possible to compose protocols sequentially or in parallel to
realize more complex resources while ensuring the overall protocol is still secure:
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Theorem 6.2.2 ([MR11, Mau12]). If the metric ∆D is compatible with the cryptographic
algebra (Φ,Σ), the construction R π−−→

ε
S is generally composable, i.e. we have:

• R (πA,πB)−−−−→
ε

S ∧ S (π′
A,π

′
B)−−−−→

ε
′

T ⇒ R (π′
A◦πA,π

′
B◦πB)−−−−−−−−−→

ε+ε′
T

• R (πA,πB)−−−−→
ε

S ∧R′ (π′
A,π

′
B)−−−−→

ε
′

S ′ ⇒ R∥R′ (πA∥π
′
A,πB∥π

′
B)−−−−−−−−−→

ε+ε′
S

• R (1,1)−−−→
0

R

As already discussed, it is possible to instantiate the resources Φ, converters Σ and
distinguishers D in different ways to obtain different security guarantees. In this thesis,
we will focus mostly on two instantiations. When all the systems (resources, converters,
and distinguishers) are run in polynomial time on an interactive quantum machine (we
say that the systems are feasible, denoted as (Φf ,Σf ,Df )), we will say that the security
is computational. If the systems are unbounded (Φu,Σu,Du) we will refer to statistical or
information-theoretic security. The precise mathematical formalism used to describe the
system models is not relevant in this work, but as discussed in [PR21] it is possible to use
combs (see Figure 3.1) for simple 2-party protocols (which is the case of this paper), while
more complex quantum protocols (involving time, relativistic cryptography. . . ) can be
modelled using [PMM+17] (classical systems also have their own formalisms [MMP+18,
LSB+19]).

6.3 Impossibility of Composable Classical RSP

In this section, we formalize and generalize the proof sketched in the overview Section 6.1
concerning the impossibility of RSPCC protocols: first we define what RSP achieve in
terms of resources and subsequently quantify the amount of information that an ideal
RSP resource must leak to the server. We show that this leakage is basically complete
and that the most meaningful and natural RSP resources cannot be realized from a
classical channel alone. We finally conclude the section by looking at the class of imperfect
(describable) RSP resources which avoid the no-go result at the price of being “fully-leaky”,
not standard, and having an unfortunately unclear composable security.

6.3.1 Remote State Preparation and Describable Resources

We first introduce, based on the standard definition in the Constructive Cryptography
framework, the notion of correctness and security of a two-party protocol which constructs
(realizes) a resource from a classical channel C.
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Definition 6.3.1 (Classically-Realizable Resource). An ideal resource S is said to be
ε-classically-realizable if it is realizable (in the sense of Theorem 6.2.2) from a classical
channel C, i.e. if there exists a protocol π = (πA, πB) between two parties (interacting
classically) such that:

C π−−→
ε

S (6.19)

A simple ideal prototype that captures the goal of an RSP protocol could be phrased
as follows: the resource outputs a quantum state (chosen from a set of states) on one
interface and a classical description of that state on the other interface to the client.
For our purposes, this view is too narrow and we want to generalize this notion. For
instance, a resource could accept some inputs from the client or interact with the server,
and it may still be possible to use this resource to come up with a quantum state and
its description. More precisely, if there is an efficient way to convert the client and
server interfaces to comply with the basic prototype above, then such a resource can be
understood as RSP resource, too. To make this idea formal, we need to introduce some
converters that witness this:

1. A converter A will output, after interacting with the ideal resource9, a classical
description [ρ] which is one of the following:

a) A density matrix (positive and with trace 1) corresponding to a quantum
state ρ.

b) The null matrix, which is useful to denote the fact that we detected some
deviation that should not happen in an honest run.

2. An (efficient) converter Q, whose goal is to output a quantum state ρ′ as close as
possible to the state ρ output by A.

3. A adversarial (potentially inneficient) converter P (for “photocopy”), whose goal
is to output a classical description [ρ′] of a quantum state ρ′ which is close to ρ
(cf. Definition 6.3.2).

Which can be pictured as follows:

A S Q[ρ] ... ...
ρ

′

A S P[ρ] ... ...
[ρ′] (6.20)

9A is allowed to interact with the (ideal) resource in a non-trivial manner. However, A will often be
the trivial converter in the sense that it simply forwards the output of the ideal resource, or—when the
resource waits for a simple activation input—picks some admissible value as input to the ideal resource
and forwards the obtained description to its outer interface.
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Then, in order to define properly our RSP resources, we start by realizing that an
RSP resource must meet at least one central criteria: accuracy. More precisely, we want
that the quantum state ρ described by A’s output is close to Q’s output ρ′ in terms of
trace distance. However, this first requirement is not enough for our impossibility result:
indeed, a completely noisy resource sending a completely mixed state could easily be
accurately reproduced using only classical communication (or even no communication
at all) by simply outputting random states. Therefore, we intuitively want to add a
restriction to avoid too noisy resources. A first solution would be to quantify the purity
of the resource, asking for Tr

(
ρ′2
)

to be close to 1. It turns out that these two conditions
can be unified and equivalently captured requiring that the quantity Tr(ρρ′) is close to
one (a rigorous formulation of this claim and its proof is provided in Section 6.5).

This formula may seem a bit arbitrary. But we can also gain a more operational
intuition of the notion of RSP by considering that an RSP resource (together with A
and Q) can be seen, not only as a box that produces a quantum state together with its
description but also as a box whose accuracy can be easily tested10. For example, if such
a box produces a state ρ′, and pretends that the description of that state corresponds to
|ϕ⟩ (i.e. [ρ] = [|ϕ⟩⟨ϕ|]), then the natural way to test it would be to measure ρ′ by doing a
projection on |ϕ⟩. This test would pass with probability ps := ⟨ϕ|ρ′|ϕ⟩, and therefore if
the box is perfectly accurate (i.e. if ρ′ = |ϕ⟩⟨ϕ|), the test will always succeed. However,
when ρ′ is far from |ϕ⟩⟨ϕ|, this test is unlikely to pass, and we will have ps < 1. We can
then generalise this same idea for arbitrary (eventually not pure) states by remarking
that ps = ⟨ϕ|ρ′|ϕ⟩ = Tr(|ϕ⟩⟨ϕ|ρ′) = Tr(ρρ′). Indeed, this last expression corresponds11

exactly to the probability of outputting E0 when measuring the state ρ′ according to
the POVM {E0 := ρ, E1 := I − ρ}, and since the classical description of ρ is known,
it is possible to perform this POVM and test the (average) accuracy of our box. This
motivates the following definition, which characterizes the set of RSP resources.

Definition 6.3.2 (RSP resources). A resource S is said to be a remote state preparation
resource within ε with respect to converters A and Q if the following three conditions
hold: (1) both converters output a single message at the outer interface, where the output
[ρ] of A is classical and is either a density matrix or the null matrix, and the output ρ′

of Q can be any quantum state of same dimension as ρ; (2) the equation:

E
([ρ],ρ′)←AS⊢Q

[ Tr(ρρ′) ] ≥ 1− ε (6.21)

10This testable property will be of great importance in our argument later.
11Note that it also turns out to be equal to the (squared) fidelity between ρ and ρ′ when ρ is pure.
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is satisfied, where the probability is taken over the randomness of A, S and Q, and finally,
(3) for all the possible outputs [ρ] of ([ρ], ρ′)← AS ⊢ Q, if we define E0 = ρ, E1 = I − ρ,
then the POVM {E0, E1} must be efficiently implementable12 by any distinguisher.

Whenever we informally speak of a resource S as being an RSP resource, this has to
be understood always in a context where the converters A and Q are fixed.

Describable resources. So far, we have specified that a resource qualifies as an RSP
resource if, when all parties follow the protocol, we know how to compute a quantum state
on the right interface and classical description of a “close” state on the other interface.
A security-related question now is, if it is also possible to extract (possibly inefficiently)
from the right interface a classical description of a quantum state that is close to the
state described by the client. If we find a converter P doing this, we would call the
(RSP) resource describable. This is captured by the following definition.

Definition 6.3.3 (Describable Resource). Let S be a resource and A a converter
outputting a single classical message [ρ] on its outer interface (either equal to a density
matrix or the null matrix). Then we say that (S ,A) is ε-describable (or, equivalently,
that S is describable within ε with respect to A) if there exists a possibly unbounded
converter P—outputting a single classical message [ρ′] on its outer interface representing
a density matrix—such that:

E
([ρ],[ρ′])←ASP

[ Tr(ρρ′) ] ≥ 1− ε (6.22)

(the expectation is taken over the randomness of S, A and P).

Reproducible converters. In the proof of our first result, we will encounter a crucial
decoding step. Roughly speaking, the core of this decoding step is the ability to convert
the classical interaction with a client, which can be seen as an arbitrary encoding of a
quantum state, back into an explicit representation of the state prepared by the server.
The ability of such a conversion can be phrased by the following definition.

Definition 6.3.4 (Reproducible Converter). A converter π that outputs (on the right
interface) a quantum state ρ is said to be reproducible if there exists a (possibly inefficient)
converter π̃ such that:

12We could also state a similar definition when this POVM can only be approximated (for example
when assuming that distinguishers only perform quantum circuits using a finite set of gates). Our results
hold analogously for such an approximation.
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1. the outer interface of π̃ outputs only a classical message [ρ′]

2. the converter π is perfectly indistinguishable from π̃ against any unbounded distin-
guisher D ∈ Du, up to the conversion of the classical messages [ρ′] into a quantum
state ρ′. More precisely, if we denote by T the converter that takes as input on
its inner interface a classical description [ρ′] of a quantum state and outputs that
quantum state ρ′ (as depicted in Figure 6.2), we have:

Cπ ≈Du

0 Cπ̃T (6.23)

π
...

ρ = π̃ T...
[ρ′] ρ

′

Figure 6.2: Reproducible converter.

Classical communication and reproducibility. We see that in general, being
reproducible is a property that stands in conflict with the quantum no-cloning theorem.
More precisely, the ability to reproduce implies that there is a way to extract knowledge
of a state sufficient to clone it. We will now show that when communication is classical,
converters are always reproducible: the idea is to compute classically (and inefficiently)
the operations that are supposed to be done quantumly. Note that this is possible only
because there is no unknown quantum input state since communication is classical.

Later, we just need to assume that the converter π interacts (classically) with the
inner interface first, and finally outputs a quantum state on the outer interface, so for
simplicity we will stick to that setting. In this way we can decompose π = (πi)i as a
sequence of quantum instruments13 forming a quantum comb (see Figure 3.1) using the
following notation14:

π := (πi)i (6.24)

Now, we can prove that a party that produces a quantum state at the end of a
protocol with exclusively classical communication is reproducible:

13Quantum instruments are the most general operation one can do quantumly, and are generalizations
of CPTP maps to classical outputs, see Definition 2.1.5 for the formal definition.

14In order to deal with protocols in which the number of exchanged message is not fixed and can
be arbitrarily large, we can also consider infinite sequences of πi’s, where the protocol stops when πi

outputs ⊥.
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Lemma 6.3.5. Let π = (πi)i (using the notation introduced Eq. (6.24)) be a converter
such that:

1. it receives and sends only classical messages from the inner interfaces

2. it outputs at the end a quantum state on the outer interface

3. each πi is a quantum instrument

then π is reproducible.

Proof. The intuition behind the proof is to argue that because the only interactions with
the outside world are classical as seen from Figure 3.1, the internal state of π can always
be computed (in exponential time) manually.
More precisely, for all i, because πi is a quantum instrument, there exists a set {Eyi

}
of maps having the properties defined in Definition 2.1.5. And because for all yi, Eyi

is completely positive, there exists a finite set of matrices {B(i,yi)
k }k, known as Kraus

operators, such that we have for all ρ (and in particular for ρ = |xi⟩ ⟨xi| ⊗ ρi):

Eyi
(ρ) =

∑
k

B
(i,yi)
k ρB

(i,yi)†
k (6.25)

Therefore, for all xi, ρi and yi, we have with probability pyi
:= Tr(Eyi

(|xi⟩ ⟨xi| ⊗ ρi)):

πi(xi, ρi) = (yi, Eyi
(|xi⟩ ⟨xi| ⊗ ρi)) (6.26)

= (yi,
∑
k

B
(i,yi)
k (|xi⟩ ⟨xi| ⊗ ρi)B(i,yi)†

k︸ ︷︷ ︸
ρi+1

) (6.27)

We remark that if we know [ρi], the coefficients of the matrix ρi, then for all yi we
can compute the probability pyi

of outputting yi, and the corresponding [ρi+1], (the
coefficients of the matrix ρi+1) by just doing the above computation. So to construct π̃
(using notations from Definition 6.3.4) we do as follows:

1. For all i we construct π̃i, which on input (xi, [ρi]) outputs (yi, [ρi+1]) with probability
pyi

using the formula Eq. (6.27).

2. We define π̃ as (π̃i) with [ρ0] = (1).

Then, we trivially have Cπ ≈0 Cπ̃T , even for unbounded distinguishers, because π̃ is
exactly the same as π, except that the representations of the quantum states in π̃ are
matrices, while they are actual quantum states in π. Therefore, adding T (which turns
any [ρi] into ρi) on the outer interface (which is the only interface that sends a classical
state [ρi]) gives us π ≈0 Cπ̃T .
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6.3.2 Classically-Realizable RSP are Describable

In this section we show our main impossibility result about remote state preparation
resources, which interestingly links a computational notion (composability) with an
information theoretic property (describability).

Theorem 6.3.6 (Classically-Realizable RSP are Describable). If an ideal resource
S is both an ε1-remote state preparation with respect to some A and Q and ε2-
classically-realizable (including against only polynomially bounded distinguishers), then it
is (ε1 + 2ε2)-describable with respect to A. In particular, if ε1 = negl(λ) and ε2 = negl(λ),
then S is describable within a negligible error ε1 + 2ε2 = negl(λ).

Proof. Let S be an ε1-remote state preparation resource with respect to (A,Q) which is
ε2-classically-realizable. Then there exist πA, πB, σ, such that:

E
([ρ],ρ′)←AS⊢Q

[ Tr(ρρ′) ] ≥ 1− ε1 (6.28)

πACπB ≈ε2 S ⊢ (6.29)

and
πAC ≈ε2 Sσ (6.30)

Now, using (6.29), we get:
AπACπBQ ≈ε2 AS ⊢ Q (6.31)

So it means that we cannot distinguish between AS ⊢ Q and AπACπBQ with an
advantage better than ε2 (i.e. with probability better than 1

2(1+ε2)). But, if we construct
the following distinguisher, that runs ([ρ], ρ′)← AS ⊢ Q and then measures ρ′ using the
POVM {E0, E1} (possible because this POVM is assumed to be efficiently implementable
by distinguishers in D), with E0 = [ρ] and E1 = I − [ρ] (which is possible because we
know the classical description of ρ, which is positive and smaller than I, even when
[ρ] = 0), we will measure E0 with probability 1 − ε1. So it means that by replacing
AS ⊢ Q with AπACπBQ, the overall probability of measuring E0 needs to be close to
1− ε1. More precisely, we need to have:

E
([ρ],ρ′)←AπACπBQ

[ Tr(ρρ′) ] ≥ 1− ε1 − ε2 (6.32)

Indeed, if the above probability is smaller than 1 − ε1 − ε2, then we can define a
distinguisher that outputs 0 if it measures E0, and 1 if it measures E1, and his
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probability of distinguishing the two distributions would be equal to:

1
2 E

([ρ],ρ′)←AS⊢Q
[ Tr(ρρ′) ] + 1

2 E
([ρ],ρ′)←AπACπBQ

[ Tr((I − ρ)ρ′) ] (6.33)

>
1
2 ((1− ε1) + 1− (1− ε1 − ε2)) (6.34)

= 1
2(1 + ε2) (6.35)

So this distinguisher would have an advantage greater than ε2, which is in contradiction
with Eq. (6.31).

Using a similar argument and Eq. (6.29), we have:

E
([ρ],ρ′)←ASσπBQ

[ Tr(ρρ′) ] ≥ 1− ε1 − 2ε2 (6.36)

We will now use πBQ to construct a B that can describe the state given by the ideal
resource. To do that, because πBQ interacts only classically with the inner interface and
outputs a single quantum state on the outer interface, then according to Lemma 6.3.5,
πBQ is reproducible, i.e. there exists15 B such that CπBQ ≈0 CBT . Therefore16, we
have:

E
([ρ],ρ′)←ASσBT

[ Tr(ρρ′) ] ≥ 1− ε1 − 2ε2 (6.37)

But because T simply converts the classical description [ρ′] into ρ′, we also have:

E
([ρ],[ρ′])←ASσB

[ Tr(ρρ′) ] ≥ 1− ε1 − 2ε2 (6.38)

After defining P = σB, we have that S is (ε1 +2ε2)-describable, which ends the proof.

While the above theorem does not rule out all the possible RSP resources, it shows
that most “useful” RSP resources are impossible. Indeed, the describable property is
usually not a desirable property, as it means that an (potentially unbounded) adversary
could learn the description of the state it received from an ideal resource. To illustrate
this theorem, we will see in the Section 6.3.3 some examples showing how this result
can be used to prove the impossibility of classical protocols implementing some specific
resources, and in Section 6.3.4 we will see some example of “imperfect” resources escaping
the impossibility result.

15Note that here B is not efficient anymore, so that’s why in the describable definition we do not put
any bound on B, but of course the proof does apply when the distinguisher is polynomially bounded.

16Indeed, we also have in particular ASσCπBQ ≈0 ASσCBT , and because C is a neutral resource
[MR11, Sec. C.2] we can remove C.
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6.3.3 RSP Resources Impossible to Realize Classically

In the last section we proved that if an RSP functionality is classically-realizable (secure
against polynomial quantum distinguishers), then this resource is describable by an
unbounded adversary having access to the right interface of that resource. In this section
we present some of these RSP resources that are impossible to classically realize.

Definition 6.3.7 (Ideal Resource SZπ
2
). SZπ

2
is the verifiable RSP resource (RSP which

does not allow any deviation from the server), that receives no input, that internally picks
a random θ ← Zπ

2 , and that sends θ on the left interface, and |+θ⟩ on the right interface
as shown in Eq. (6.39):

SZ π
2

θ $← {0, π
4 ,

π
2 ,

3π
4 }

θ |+θ⟩ (6.39)

Lemma 6.3.8. There exists a universal constant η > 0, such that for all 0 ≤ ε < η the
resource SZπ

2
is not ε-classically-realizable.

Proof. This proof is at its core a direct consequence of quantum no-cloning: If we define
A(θ) := [|+θ⟩⟨+θ|] (A just converts θ into its classical density matrix representation)
and Q the trivial converter that just forwards any message, then SZπ

2
is a 0-remote state

preparation resource with respect to A and Q because:

E
([ρ],ρ′)←ASZ π

2
⊢Q

[ Tr(ρρ′) ] = 1
4
∑
θ∈Zπ

2

Tr(|+θ⟩⟨+θ||+θ⟩⟨+θ|) = 1 ≥ 1− 0 (6.40)

Then, we remark also that there exists a constant η > 0 such that for all δ < η, SZπ
2

is
not δ-describable with respect to A.

Indeed, it is first easy to see that SZπ
2

is not 0-describable with respect to A. Indeed,
we can assume by contradiction that there exists P such that:

E
([ρ],[ρ′])←ASZ π

2
P
[ Tr(ρρ′) ] = 1 (6.41)

Then, because ρ = |+θ⟩⟨+θ| is a pure state, Tr(ρρ′) corresponds to the fidelity of ρ and
ρ′, so Tr(ρρ′) = 1⇔ ρ = ρ′. But this is impossible because P just has a quantum state
ρ as input, and if it can completely describe this quantum state then it can actually
clone perfectly the input state with probability 1. But because the different possible
values of ρ are not orthogonal, this is impossible due to the no-cloning theorem.

Moreover, it is also not possible to find a sequence (P (n))n∈N of CPTP maps that
produces two copies of ρ with a fidelity arbitrary close to 1 (when n→∞), because
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CPTP maps are compact and the fidelity is continuous.
Therefore, there exists a constant η > 0,17 such that:

E
([ρ],[ρ′])←ASZ π

2
P
[ Tr(ρρ′) ] < 1− η (6.42)

Now, by contradiction, we assume that SZπ
2

is ε-classically-realizable. Because
limn→∞ ε(n) = 0, there exists N ∈ N such that ε(N) < η/2. So, using Theorem 6.3.6,
SZπ

2
is 2ε(N)-describable with respect to A, which contradicts 2ε(N) < η.

Next, we describe RSPV , a variant of SZπ
2

introduced in [GV19]: more precisely, the
set of prepared states is bigger, the adversary can make the resource abort and the client
can partially choose the basis of the output state. Similar to the SZπ

2
, we prove that

classically-realizing RSPV is not possible.

Definition 6.3.9 (Ideal Resource RSPV , See [GV19]). The ideal verifiable remote state
preparation resource, RSPV , takes an input W ∈ {X,Z} on the left interface, but no
honest input on the right interface. The right interface has a filtered functionality that
corresponds to a bit c ∈ {0, 1}. When c = 1, RSPV outputs error message ERR on both
the interfaces, otherwise:

1. if W = Z the resource picks a random bit b and outputs b ∈ Z2 to the left interface
and a computational basis state |b⟩ ⟨b| to the right interface;

2. if W = X the resource picks a random angle θ ∈ Zπ
4 and outputs θ to the left

interface and a quantum state |+θ⟩ ⟨+θ| to the right interface.

Corollary 6.3.10. There exists a universal constant η > 0, such that for all 0 ≤ ε < η

the resource RSPV is not ε-classically-realizable.

Proof. The proof is quite similar to the proof of impossibility of SZπ
2
. The main difference

is that we need to address properly the abort case when c = 1. The main idea is to define
A a bit differently: A picks always W = X, and outputs as ρ the classical density matrix
corresponding to s when s ̸= ERR, and when s = ERR, A outputs the null matrix ρ = 0
(Q is still the trivial converter). It is easy to see again that this resource is a 0-remote
state preparation resource, and it is also impossible to describe it with arbitrary small
probability: indeed, when c = 1, ρ = 0, so the trace Tr(ρρ′) (that appears in Eq. (6.22))

17Note that for finding a more precise bound for η, it is possible to use Semidefinite Programming
(SDP), or the method presented in [KRK13, p. 2]. However in our case it is enough to say that ε > 0 as
we are interested only in asymptotic security.
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is equal to 0. Therefore, from a converter P that (sometimes) inputs c = 1, we can
always increase the value of Tr(ρρ′) by creating a new converter P ′ turning c into 0. And
we are basically back to the same picture as SZπ

2
, where we have a set of states that

is impossible to clone with arbitrary small probability, which finishes the impossibility
proof.

Remark 6.3.11. Note that our impossibility of classically-realizing RSPV does not con-
tradict the result of [GV19]. Specifically, in their work they make use of an additional
assumption (the so called “Measurement Buffer” resource), which “externalizes” the
measurement done by the distinguisher onto the simulator. In practice, this allows the
simulator to discretely change the operation that was initially supposed to be performed
by the server, or, equivalently, to temper the device used by the server. However, what
our result shows is that it is impossible to realize this Measurement Buffer resource with
a protocol interacting purely classically. Intuitively, the Measurement Buffer re-creates
a quantum channel between the simulator and the server: when the simulator is not
testing that the server is honest, the simulator replaces the state of the server with the
quantum state sent by the ideal resource. This method has however a second drawback:
it is possible for the server to put a known state as the input of the Measurement Buffer,
and if he is not tested on that run (occurring with probability 1

n
), then he can check that

the state has not been changed, leading to polynomial security (a polynomially bounded
distinguisher can distinguish between the ideal and the real world). And because in CC,
the security of the whole protocol is the sum of the security of the inner protocols, any
protocol using this inner protocol will not be secure against polynomial distinguishers.

6.3.4 Accepting the Limitations: Fully Leaky RSP resources

As explained in the previous section, Theorem 6.3.6 rules out all resources that are
impossible to describe with unbounded power: therefore the only type of classically-
realizable RSP resources would be the one leaking the full classical description of the
output quantum state to an unbounded adversary, which we will refer to as being
fully-leaky RSP. Fully-leaky RSP resources can be separated into two categories:

1. If the RSP is describable in quantum polynomial time, then the adversary can get
the secret in polynomial time. This is obviously not an interesting case as the useful
properties that we know from quantum computations (such as UBQC) cannot be
preserved if such a resource is employed to prepare the quantum states.
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2. If the RSP are only describable inefficiently (for instance in exponential time),
then these fully-leaky RSP resources are not trivially insecure, but their universally
composable security remains unclear. Indeed, it defeats the purpose of aiming at
a nice ideal resource where the provided security should be clear “by definition”
and it becomes hard to quantify how the additional leakage could be used when
composed with other protocols. Actually, we claim that the security we obtain is
not better than game-based security. A possible remedy would be to show restricted
composition following [JM17] which we discuss at the end of this paragraph.

For completeness, we present an example of a resource (producing a BB84 state corre-
sponding to the set of states produced by the simpler QFactory protocol) that stands
in this second category when assuming that post-quantum encryption schemes exist
(based on the hardness of the LWE problem). As explained before, this resource needs
to completely leak the description of the classical state, which in our case, is done by
leaking an encryption of the description of the output state. The security guarantees
therefore rely on the properties of the encryption scheme, and not on an ideal privacy
guarantee as one would wish for, which is an obvious limitation.

Definition 6.3.12 (Ideal Resource RSPBB,FCC ). Let F = (Gen, Enc, Invert) be a δ-GHZH

capable family (Definition 4.2.1). Then, we define RSPBB,FCC as pictured in Figure 6.3. B1

represents the basis of the output state, and is guaranteed to be random even if the right
interface is malicious. B0 represents the value bit of the output state when encoded in
the basis B1, and in the worst case it can be chosen by the right interface in a malicious
scenario18. Note however that in a malicious run, the adversary does not have access (at
least not directly from the ideal resource) to the quantum state whose classical description
is known by the classical client.

Lemma 6.3.13. The BB84-QFactory protocol (Protocol 3) securely constructs RSPBB,FCC

from a classical channel, where F is the δ-GHZH capable family used in the protocol.

Proof. We already know that the BB84-QFactory protocol (πA, πB) is correct with su-
perpolynomial probability if the parameters are chosen accordingly (Corollary 4.4.1),
therefore

πACπB ≈ε RSPBB,FCC ⊢ (6.43)

for some negligible ε. We now need to find a simulator σ such that

πAC ≈ε′ RSPBB,FCC σ (6.44)
18Note that here the right interface can have (in a malicious scenario) full control over B0, but in the

BB84-QFactory Protocol it is not clear what an adversary can do concerning B0.
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RSPBB,FCC
B1

$← {0, 1}
if c = 0 then
B0

$← {0, 1}
|ψ⟩ := H

B1X
B0 |0⟩

else
(k, tk)← Gen(1λ

, B1)
B0 := f(F , B1, k, tk)

fi
(B1,B0)

c

|ψ⟩

f

Figure 6.3: Ideal resource RSPBB,FCC , which prepares one of the four BB84 states. The
“snake” arrow is sent only in the honest case (c = 0), and the dashed arrow is received
only in the malicious case (c = 1).

The simulator is trivial here: it sends c = 1 to ideal resource then, it just forwards the k
given by the resource to its outer interface, and when it receives the (y, b) corresponding
to the measurements performed by the server, it just sets the deviation f to be the same
function as the one computed by πA. Therefore, πAC ≈0 RSPBB,FCC σ, which ends the
proof.

Concluding remarks. We see that using this kind of leaky resource is not desirable:
the resources are non-standard and it seems hard to write a modular protocol with
this resource as an assumed resource. The resource is very specific and mimics its
implementation. As such, we cannot really judge its security.

On the other hand however, if a higher-level protocol did guarantee that the value
B0 always remains hidden, i.e., a higher level protocol’s output does not depend on
B0, it is easy to see that we could simulate y0 without knowledge about B1 thanks to
the semantic security of the encryption scheme. If we fix this restricted context, the
ideal resource in Figure 6.3 could be re-designed to not produce the output k at all and
therefore, by definition, leak nothing extra about the quantum state (note that in such
a restricted context, the simulator can simply come up with a fake encryption that is
indistinguishable). This can be made formal following [JM17], but it is interesting future
research to see whether it is possible to come up with restricted yet useful contexts that
admit nice ideal resources for RSP following this framework.
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6.4 Impossibility of Composable Classical-Client
UBQC

In the previous section, we showed that it was impossible to get a (useful) composable
RSPCC protocol. A (weaker) RSP protocol, however, could still be used internally in
other protocols, hoping for the overall protocol to be composably secure. To this end,
we analyze the composable security of any UBQCCC protocol, which is following the
UBQC (Protocol 1) protocol except that the quantum communication are replaced by any
classical-client RSP protocol. Here, we assume we have a correct RSP protocol (except
with negligible error), but we make no assumption about the security of this protocol.

6.4.1 Impossibility of Composable UBQCCC on 1 Qubit

In order to prove that there exists no UBQCCC protocol, we will first focus on the simpler
case when the computation is described by a single measurement angle. The resource
that performs a blind quantum computation on one qubit (SUBQC1) is defined as below,
following the definition introduced in [DFP+14].

Definition 6.4.1 (Ideal resource of single-qubit UBQC [DFP+14]). The definition of
the ideal resource SUBQC1, depicted in Figure 6.4, achieves blind quantum computation
specified by a single angle ϕ. The input (ξ, ρ) is filtered when c = 0. The ξ can be any
deviation (specified for example using the classical description of a CPTP map) that
outputs a classical bit, and which can depend on the computation angle ϕ and on some
arbitrary quantum state ρ.

if c = 0 then
s̄ = M±ϕ |+⟩

else
s̄ = ξ(ρ, ϕ)

fi

SUBQC1

ϕ

s̄

c

(ξ, ρ)

Figure 6.4: Ideal resource SUBQC1 for UBQC with one angle, with a filtered (dashed)
input. In the case of honest server the output s̄ ∈ {0, 1} is computed by measuring the
qubits |+⟩ in the {|+ϕ⟩ , |−ϕ⟩} basis. On the other hand if c = 1 any malicious behaviour
of server can be captured by (ξ, ρ), i.e. the output s̄ is computed by applying the CPTP
map ξ on the input ϕ and on another auxiliary state ρ chosen by the server.
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Theorem 6.4.2 (No-go composable classical-client single-qubit UBQC). Let (PA, PB) be
a protocol interacting only through a classical channel C, such that (θ, ρB)← (PACPB)
with θ ∈ Zπ

4 , and such that (by correctness) the trace distance between ρB and |+θ⟩ ⟨+θ|
is negligible19 with overwhelming probability20. Then, if we define πA and πB as the
UBQCCC protocol on one qubit that makes use of (PA, PB) as a sub-protocol to replace
the quantum channel (as pictured in Figure 6.5), (πA, πB) is not composable, i.e. there
exists no simulator σ such that:

πACπB ≈ε SUBQC1 ⊢c=0 (6.45)
πAC ≈ε SUBQC1σ (6.46)

for some negligible ε = negl(λ).

PA

θ
r ← {0, 1}
δ = θ + rπ + ϕ

s̄ = s⊕ r

πA
ϕ

s̄

PB

ρB ≈ |+θ⟩

s = M±δρB

m
...

πB

δ

s

Figure 6.5: UBQC with one qubit when both Alice and Bob follows the protocol honestly
(see Protocol 5)

Proof. The first proof we obtained for this theorem was quite long and hard to follow: we
were basically studying all the possible strategies of σ, proving that none of them could
lead to a secure protocol21: the last step in our proof was to say that if σ was able to
trick the distinguisher, then σ would be able to be used to do an impossible measurement.
However, we found later a much more elegant method to prove this theorem—that will
be presented in the rest of this section—by remarking that the SUBQC1 resource can

19In the following, the parties PA and PB (and therefore πA and πB) and the simulator σ depend on
some security parameter λ, but, in order to simplify the notations and the proof, this dependence will
be implicit. We are as usual interested only in the asymptotic security, when λ→∞.

20Note that here ρB is different at every run: it corresponds to the density matrix of the state
obtained after running PB , when tracing out the environment and the internal registers of PB and PA.

21The proof has not been included in this thesis not to exhaust my reporters, but in case you are
interested I can share the proof. Slightly more details are included in Section 6.6.
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be seen as a RSP resource. We can therefore use the machinery introduced in our first
impossibility result to treat this case.

In order to prove this theorem, we will proceed by contradiction. Let us assume
that there exists (PA, PB), and a simulator σ having the above properties. Then, for the
same resource SUBQC1 we will derive a different protocol π′ = (π′A, π′B) that realizes it
(the exact definition will be given later), but using a different filter22 ⊢σ and a different
simulator σ′:

π′ACπ′B ≈ε SUBQC1 ⊢σ (6.47)
π′AC ≈ε SUBQC1σ

′ (6.48)

More specifically, the new filter ⊢σUBQC1 will depend on σ defined in Eq. (6.46). Then
our main proof can be described in the following steps:

1. We first show in Lemma 6.4.4 that SUBQC1 is also ε-classically-realizable by (π′A, π′B)
with the filter ⊢σ.

2. We then prove in Lemma 6.4.5 that the resource SUBQC1 is an RSP within negl(λ),
with respect to some well chosen converters A and Q (see Figure 6.6) and this new
filter ⊢σ.

3. Then, we use the main result about RSP (Theorem 6.3.6) to show that SUBQC1 is
describable within negl(λ) with respect to A (Corollary 6.4.6).

4. Finally, in Lemma 6.4.8 we prove that if SUBQC1 is describable then we could
achieve superluminal signaling, which concludes the contradiction proof.

Definition 6.4.3. Let π′ = (π′A, π′B) be the protocol realizing SUBQC1 described in the
following way (as pictured Figure 6.6):

• π′A = πA (Figure 6.5)
• π′B: runs PB, obtains a state ρB, then uses the angle δ received from its inner

interface to compute ρ̃ := RZ(−δ)ρB, and finally outputs ρ̃ on its outer interface
and s := 0 on its inner interface.

Then we define ⊢σ= σπ′B depicted in Figure 6.7 (with σ being the simulator from Eq. (6.46)
above). We further let the converters A and Q be as described in Figure 6.6:

Lemma 6.4.4. If SUBQC1 is ε-classically-realizable by (πA, πB) with the filter ⊢c=0 then
SUBQC1 is also ε-classically-realizable by (π′A, π′B) with the filter ⊢σ.

22 Note that we could include this new filter inside SUBQC1 and use a more traditional filter ⊢c=0

but for simplicity we will just use a different filter.
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A π′
A π′

B Q

PA PB
ρB
≈ |+θ〉θ

φ

δ
ρ̃ := RZ(−δ)ρB
s := 0s ρ̃ ρ̃

φ0←$ Zπ
2

φ := −φ0

φ′ := φ0 + s̄π
[φ′]

r←$ {0, 1}
δ := θ + φ+ rπ
s̄ := s⊕ rs̄

Figure 6.6: Definition of A, π′A, π′B and Q.

`σ

SUBQC1 σ π′
B

φ

s̄
ρ̃

Figure 6.7: Description of ⊢σ.

Proof. If SUBQC1 is ε-classically-realizable with ⊢c=0, then as seen in Theorem 6.4.2, we
have:

πACπB ≈ε SUBQC1 ⊢c=0 (6.49)
πAC ≈ε SUBQC1σ (6.50)

Now we can show that SUBQC1 is ε-classically-realizable by (π′A, π′B) with ⊢σ , i.e. that
there exists a simulator σ′ such that:

π′ACπ′B ≈ε SUBQC1 ⊢σ (6.51)
π′AC ≈ε SUBQC1σ

′ (6.52)

For the correctness condition, we have:

π′ACπ′B = (πAC)π′B (6.53)
≈ε (SUBQC1σ)π′B (6.54)
= SUBQC1 ⊢σ (6.55)

For the security condition, we define σ′ = σ. Then, we have:

π′AC = πAC (6.56)
≈ε SUBQC1σ (6.57)

Which concludes our proof.
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Lemma 6.4.5. If SUBQC1 is negl(λ)-classically-realizable with ⊢c=0 then SUBQC1 is a
negl(λ)-remote state preparation resource with respect the converters A and Q and filter
⊢σ defined in Figure 6.6.

Proof. We need to prove that:

E
([ρ],ρB)←ASUBQC1⊢

σQ
[ Tr(ρρB) ] ≥ 1− ε (6.58)

First, we remark that due to Lemma 6.4.4:

ASUBQC1 ⊢σ Q ≈ε Aπ′ACπ′BQ (6.59)

However, from the protocol description it is easy to check that in the real world s̄ =
0⊕ r = r, and therefore ϕ′ := ϕ0 + s̄π = ϕ0 + rπ and ρ = |+ϕ

′⟩⟨+ϕ
′|. And because the

trace distance between ρB and |+θ⟩⟨+θ| is negligible with overwhelming probability (by
the correctness of (PA, PB)), then we also have that ρ̃ = RZ(−δ)ρBR(−δ)† is negligibly
close in trace distance to |+θ−δ⟩⟨+θ−δ| = |+−ϕ0+rπ⟩⟨+−ϕ0+rπ| = |+ϕ

′⟩⟨+ϕ
′|. Therefore,

we have:
E

([ρ],ρ̃)←Aπ′
ACπ′

BQ
[ Tr(ρρ̃) ] ≥ 1− negl(λ) (6.60)

Then it also means that:

E
([ρ],ρ̃)←ASUBQC1⊢

σQ
[ Tr(ρρ̃) ] ≥ 1− negl(λ) (6.61)

otherwise we could (using a similar argument to the one given in the proof of Theo-
rem 6.3.6) distinguish between the ideal and the real world, contradicting Eq. (6.59),
which concludes the proof.

Now, using our main Theorem 6.3.6 we obtain directly that if SUBQC1 is classically-
realizable and RSP with respect to filter ⊢σ, then it is also describable:

Corollary 6.4.6. If SUBQC1 is negl(λ)-classically-realizable with respect to filter ⊢c=0

then SUBQC1 is negl(λ)-describable with respect to the converter A described above.

The problem of describability is that we only know that the state are close. However,
in our reduction we need to say that the states are actually identical (so that we can
transmit information faster than light). We prove now that if a resource is negl(λ)-
describable, then by “rounding” the classical description given by P to the nearest state
that A can output, then we have with overwelming probability the output of A and our
new P are identical.
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Lemma 6.4.7. Let Ω = {[ρi]} be a set of (classical descriptions of) density matrices, such
that ∀i ̸= j, Tr(ρiρj) ≤ 1−η. Then let ([ρ], [ρ̃]) be two random variables (representing the
classical description of the density matrices), such that [ρ] ∈ Ω and E

([ρ],[ρ̃])
[ Tr(ρρ̃) ] ≥ 1−ε,

with η > 6
√
ε. Then, if we define the following “rounding” operation that rounds ρ̃ to the

closest ρ̃r ∈ Ω:

[ρ̃r] := RoundΩ([ρ̃]) := arg max
[ρ̃r]∈Ω

Tr(ρ̃rρ̃) (6.62)

Then we have:
Pr

([ρ],[ρ̃])
[ RoundΩ([ρ̃]) = [ρ] ] ≥ 1−√ε (6.63)

In particular, if ε = negl(λ), and η ̸= 0 is a constant, Pr [ RoundΩ([ρ̃]) = [ρ] ] ≥ 1 −
negl(λ).

Proof. We know that E
([ρ],[ρ̃])

[ Tr(ρρ̃) ] ≥ 1− ε. Therefore, using Markov inequality we get
that:

Pr
([ρ],[ρ̃])

[
1− Tr(ρρ̃) ≥ √ε

]
≤ E[ 1− Tr(ρρ̃) ]

ε
(6.64)

Pr
([ρ],[ρ̃])

[
Tr(ρρ̃) ≤ 1−√ε

]
≤ ε√

ε
(6.65)

Pr
([ρ],[ρ̃])

[
Tr(ρρ̃) ≥ 1−√ε

]
≥ 1−√ε (6.66)

But when Tr(ρρ̃) ≥ 1−√ε, we have RoundΩ([ρ̃]) = ρ.

We will indeed show that ∀ρi ∈ Ω, Tr(ρiρ̃) ≤ Tr(ρρ̃). By contradiction, we assume
there exists ρi ∈ Ω such that ρi ̸= ρ and Tr(ρiρ̃) > Tr(ρρ̃) ≥ 1 − √ε. But due to
Lemma 6.5.4 we have:

Tr(ρiρ) ≥ 1− 3(
√
ε+
√
ε) = 1− 6

√
ε (6.67)

However, because both ρi and ρ belong to Ω, we also have Tr(ρiρ) ≤ 1− η < 1− 6
√
ε,

which is absurd.
Therefore, using Eq. (6.66) we have

Pr
([ρ],[ρ̃])

[ RoundΩ([ρ̃]) = [ρ] ] ≥ 1−√ε (6.68)

which concludes the proof.

We can now conclude our proof by remarking that describability implies signaling:

Lemma 6.4.8. SUBQC1 cannot be negl(λ)-describable with respect to converter A.

165



CHAPTER 6. IMPOSSIBILITY RESULTS IN COMPOSABLE SECURITY

C D

A SUBQC1 P P ′
[ρ̃] φ′

π

= φ0 mod π

φ0←$ Zπ
2

Figure 6.8: Illustration of the no-signaling argument.

Proof. If we assume that SUBQC1 is negl(λ)-describable, then there exists a converter P
(outputting [ρ̃]) such that:

E
([ρ],[ρ̃])←ASUBQC1P

[ Tr(ρρ̃) ] ≥ 1− negl(λ) (6.69)

We define the set Ω := {[|+θ
′⟩⟨+θ

′ |] | θ′ ∈ {0, π/4, ..., 7π/4}}. For simplicity, we will
denote in the following [θ] = [|+θ⟩⟨+θ|].

In the remaining of the proof, we are going to use the converters A and P together
with the ideal resource SUBQC1, to construct a 2-party setting that would achieve signaling,
which would end our contradiction proof. More specifically, we will define a converter
D running on the right interface of SUBQC1 which will manage to recover the ϕ0 chosen
randomly by A.
As shown in Figure 6.8, if we define C as C := ASUBQC1 and D the converter described
above, then the setting can be seen equivalently as: C chooses as random ϕ0 and D needs
to output ϕ0 mod π. This is however impossible, as no message is sent from SUBQC1

to its right interface (as seen in Figure 6.8) (and thus no message from C to D), and
therefore guessing ϕ0 is forbidden by the no-signaling principle [GRW80].

We define P ′ as the converter that, given [ρ̃] from the outer interface of P computes
[ϕ̃] = RoundΩ([ρ̃]) and outputs ϕ̃π = ϕ̃ mod π (as depicted in Figure 6.8). We will now
prove that ϕ̃π = ϕ0 mod π with overwhelming probability.

All elements in Ω are different pure states, and in finite number, so there exist a
constant η > 0 respecting the first condition of Lemma 6.4.7. Moreover from Eq. (6.69)
we have that SUBQC1 is ε-describable with ε = negl(λ), so we also have (for large enough
n), η > 6

√
ε. Therefore, from Lemma 6.4.7, we have that:

Pr
([ρ],[ρ̃])←ASUBQC1P

[ RoundΩ([ρ̃]) = [ρ] ] ≥ 1− negl(λ) (6.70)

But using the definition of converter A, we have: [ρ] = [ϕ′], where ϕ′ = ϕ0 + s̄π, and
hence ϕ′ mod π = ϕ0 mod π. Then, using the definition of P ′, the Eq. (6.70) is equivalent
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to:
Pr

([ϕ′],ϕ̃π)←ASUBQC1PP ′

[
ϕ̃π = ϕ0 mod π

]
≥ 1− negl(λ) (6.71)

However, as pictured in Figure 6.8, this can be seen as a game between C = ASUBQC1

and D = PP ′, where, as explained before, C picks a ϕ0 ∈ Zπ
2 randomly, and D needs to

output ϕ0 mod π. From Eq. (6.71) D wins with overwhelming probability, however, we
know that since there is no information transfer from C to D, the probability of winning
this game with probability better than 1/2 (guessing the bit at random) would imply
signaling, which is known to be impossible in quantum information.

6.4.2 Impossibility of Composable UBQCCC on Any Number of
Qubits

We saw in Theorem 6.4.2 that it is not possible to implement a composable classical-client
UBQC protocol performing a computation on a single qubit. In this section, we prove that
this result generalizes to the impossibility of UBQCCC on computations using an arbitrary
number of qubits. The proof works by reducing the general case to the single-qubit case
from the previous section.

Theorem 6.4.9 (No-go Composable Classical-Client UBQC). Let (PA, PB) be a protocol
interacting only through a classical channel C, such that (θ, ρB)← (PACPB) with θ ∈ Zπ

4 ,
and such that the trace distance between ρB and |+θ⟩ ⟨+θ| is negligible with overwhelming
probability. Then, if we define (πGA , πGB) as the UBQCCC protocol on any fixed graph G

(with at least one output qubit23), that uses (PA, PB) as a sub-protocol to replace the
quantum channel, (πGA , πGB) is not composable, i.e. there exists no simulator σ such that:

πGACπGB ≈ε SUBQC ⊢c=0 (6.72)
πGAC ≈ε SUBQCσ (6.73)

for some negligible ε = negl(λ), where SUBQC is a trivial generalisation of SUBQC1 to
multiple qubits (defined in [DFP+14] under the notation Sblind) for which an additional
leakage lψA is send to the server, which is (at least in our case) equal to the size of the
graph state.

Proof. To prove this statement, we just need to prove that we can come back to the
setting with a single qubit, where we want to perform a computation with angle ϕ, and

23Note, that in UBQCCC with zero output qubits the client does not receive any results. Hence, the
protocol is trivially implementable for this degenerated case.
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output one angle close to ϕ as in the proof of Theorem 6.4.2. Because the graph has at
least one output qubit, we will denote by ω the index of the last output qubit. So the
idea is to let the distinguisher choose the client input such that for any node i ̸= ω in
the graph, ϕi = 0, and for the output qubit, ϕω = ϕ. Moreover, on the server side, the
distinguisher will behave like the honest protocol πGB , except that it will not entangle
the qubits provided by PA, and it will deviate on the output qubit ω by not measuring
it and sending s := 0, the qubit being rotated again with angle −δω, and outputted on
the outer interface, like in the one-qubit case (see Figure 6.6). It is now easy to see by
induction (over the index of the qubit, following the order chosen on G) that, in the
real world, for all i ̸= ω, we always have si = ri, therefore s̄i = 0. So for all nodes i,
(including ω), sXi = ⊕i∈Di

s̄i = 0 and sZi = ⊕i∈D′
i
s̄i = 0. Thus we have on the last node:

δω = θω + (−1)s
X
ω ϕω + sZωπ + rωπ

= θω + ϕ+ rωπ

which corresponds exactly to the single-qubit setting, shown to be impossible.

6.5 Distance Measures for Quantum States

When justifying the choice of Definition 6.3.2, we gave two different interpretations, either
saying that an RSP resource must be testable (i.e. Tr(ρσ) ≈ 1, this is the choice used in
the actual definition), or saying that a resource must be accurate and pure (DTD(ρ, σ) ≈ 0,
Tr(ρ2) ≈ 1 and Tr(σ2) ≈ 1). In this section, we show that both interpretations are
basically equivalent. First, we state this simple lemma which will be useful in the rest of
the section:

Lemma 6.5.1. For any two self-adjoint trace-class operators ρ, σ it holds that

Tr(ρσ) = 1
2
[
Tr(ρ2) + Tr(σ2)

]
− 1

2 ∥ρ− σ∥
2
HS ,

where the Hilbert-Schmidt norm is defined as

∥A∥HS =
√

Tr(A∗A).

Proof. This follows directly from the relation

(ρ− σ)2 = ρ2 − ρσ − σρ+ σ2

and the fact that ρ and σ are self-adjoint operators.
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The following lemma formalizes the following statement: If Tr(ρσ) is close to 1, then
both ρ and σ must be almost pure, and ρ and σ must be close to each other. Note that
Lemma 6.5.2 holds in particular for density matrices ρ and σ, despite being stated for a
more general class of operators.

Lemma 6.5.2. Let ε ≥ 0 and Tr (ρσ) ≥ 1− ε for two self-adjoint, positive semi-definite
operators ρ, σ with trace less than 1. Then, it holds that

1. Tr
(
ρ2
)
≥ 1− 2ε,

2. Tr
(
σ2
)
≥ 1− 2ε, and

3. ∥ρ− σ∥HS ≤
√

2ε.

Proof. 1. With the formula from Lemma 6.5.1, we infer that

Tr(ρσ) ≤ 1
2
[
Tr(ρ2) + Tr(σ2)

]
≤ 1

2
[
Tr(ρ2) + 1

]
,

using the non-negativity of the Hilbert-Schmidt norm and the fact that Tr
(
σ2
)
≤ 1.

Hence,

Tr
(
ρ2
)
≥ 2 Tr (ρσ)− 1 ≥ 1− 2ε.

2. Analogously to 1.

3. Using Tr
(
ρ2
)
≤ 1 and Tr

(
σ2
)
≤ 1, we obtain

Tr (ρσ) ≤ 1− 1
2 ∥ρ− σ∥

2
HS

⇒ ∥ρ− σ∥2
HS ≤ 2 (1− Tr (ρσ)) ≤ 2ε,

which implies the claim.

While the previous lemmas were first stated in term of the Hilbert-Schmidt norm,
the trace distance is more meaningful since it is the natural distance between quantum
states.

Lemma 6.5.3. Let λ be a security parameter and let ρ, σ be two density matrices of
finite and fixed dimension. Then, the following statements are equivalent:

1. Tr
(
ρ2
)
≥ 1− negl(λ), Tr

(
σ2
)
≥ 1− negl(λ), and DTD(ρ, σ) ≤ negl(λ),
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2. Tr (ρσ) ≥ 1− negl(λ),

where DTD(ρ, σ) denotes the trace distance (Definition 2.3.2).

Proof. One direction of the equivalence follows directly from Lemma 6.5.2. The other
direction follows from the formula in Lemma 6.5.1 and the fact that in finite-dimensional
spaces the trace norm is equivalent to the Hilbert-Schmidt norm.

Note also that Tr(ρσ) also benefits from a sort of triangle inequality.

Lemma 6.5.4. Let ε1, ε2 ≥ 0. Let further Tr (ρ1ρ2) ≥ 1 − ε1 and Tr (ρ2ρ3) ≥ 1 − ε2

for self-adjoint, positive semi-definite operators ρ1, ρ2, ρ3 with trace less than 1. Then it
holds that Tr (ρ1ρ3) ≥ 1− 3 (ε1 + ε2).

Proof. From Lemma 6.5.2 we know that Tr
(
ρ2

1

)
≥ 1− 2ε1, Tr

(
ρ2

3

)
≥ 1− 2ε2, and

∥ρ1 − ρ2∥HS ≤
√

2ε1, ∥ρ2 − ρ3∥HS ≤
√

2ε2.

By the triangle inequality for the Hilbert-Schmidt norm, it follows readily that

∥ρ1 − ρ3∥HS ≤
√

2ε1 +
√

2ε2

and therefore

∥ρ1 − ρ3∥2
HS ≤

(√
2ε1 +

√
2ε2

)2
= 2ε1 + 2ε2 + 4√ε1

√
ε2 ≤ 4 (ε1 + ε2)

where we applied the inequality of the geometric mean to obtain the last bound. Using
the formula from Lemma 6.5.1, we then conclude that

Tr (ρ1ρ3) = 1
2
[
Tr(ρ2

1) + Tr(ρ2
3)
]
− 1

2 ∥ρ1 − ρ3∥2
HS

≥ 1
2 [1− 2ε1 + 1− 2ε2]−

1
24 (ε1 + ε2) ≥ 1− 3 (ε1 + ε2) .

6.6 Discussions and Open Questions

In this chapter, we saw that there exist no RSP protocols secure in the generally
composable Constructive Cryptography framework. We expect our method to also apply
to other generally composable frameworks, like Quantum Universal Composability [Unr10]
since both models are mostly equivalent for the two-party setting. There may be however
multiple ways to obtain some sort of composability.
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A first option may be to use additional assumptions. Note that our result rules
out all “classical” assumptions like Common Reference Strings: the assumptions must
fundamentally recreate a quantum channel between the simulator and the distinguisher.
As already discussed in Remark 6.3.11, this is the path taken by [GV19]: they propose
to use an additional assumption called “Measurement Buffer” that forces the server to
externalize some operations. Unfortunately, only polynomial security has been obtained
so far using this assumption. While this seems to be a quite fundamental limitation,
there may be some tricky methods—potentially involving error correcting codes—to
obtain superpolynomial security with the Measurement Buffer. However, I do think that
Measurement Buffer is quite fundamentally bound to polynomial security: in order to
recreate a quantum channel between the simulator and the server, the simulator needs
to sometimes replace the state inside the Measurement Buffer with something coming
from the ideal functionality (otherwise it is no better than a classical channel). But
this is typically detectable by the server since it could decide to input known states into
the measurement buffer and check if the measurement outcome are the expected ones,
allowing him to distinguish the ideal world from the real world.

Continuing with additional assumptions, it could be interesting to see if the Quantum
Random Oracle model could be used to obtain general composable security. As with
the Measurement Buffer, this would also recreate a quantum link between the simulator
and the server, but the issues inherent to the former may be bypassed in the Quantum
Random Oracle model. Indeed, it could be much harder for the server to check if the
Quantum Oracle output has been modified or not. However, the protocol should certainly
be adapted to fit the Random Oracle model: in our case, the function h could for instance
be replaced with a Random Oracle instead. That said, I have not tried to explore this
path further.

Another possible path to explore would be to directly prove the security of larger
protocols involving internally a classical RSP protocol. We already shown that UBQC-like
protocols cannot be shown to be composably secure when a classical RSP protocol is
used internally, but it does not rule out other schemes. Fundamentally, the reason why
UBQC is not provably secure in a composable way is that the simulator should be able
to guess precisely the deviations done by the server in order to be able to forward this
information with enough precision to the ideal RSP resource24. However, the number of

24Our initial proof of impossibility for composable UBQCCC was actually using this point of view: we
were considering the simulator and ideal resource as a black box, and we were studying the input/output
probability distribution. By relying only on the correctness properties of the resource, we were able to
find a set of constraints on this probability distribution. However, this set of constraint turns out to be
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possible deviations is so high compared to the number of bits received by the simulator
that the simulator cannot possibly guess enough information about the deviation, leading
to an inevitably non-coherent output. However, if we can reduce the number of possible
undetected deviations, the impossibility result may not apply anymore. In particular, if
we consider the verifiable variant of UBQCcalled VBQC [FK17], any significant deviation
of the server is detected: as a result, the simulator would not need to find which deviation
has been performed, but if a deviation has been done. Proving the security of a classical-
client VBQC protocol (with superpolynomial security and/or without a Measurement
Buffer assumption) is however an open question.

Giving up on general composable security, we may also be able to obtain meaningful
composable security by lowering our expectations. Notably, we may wonder whether
general composability can be replaced with the sequential security offered notably by the
standalone framework. However, the question of the sequential composable security of
classical-client RSP protocols is also open.

incompatible with quantum mechanics as we were able to derive from them an impossible measurement
using the simulator.
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Zero-Knowledge, Quantum States
and Multi-Party Authorized GHZ

“I know that I know nothing.”

— Socrates discovering NIZK

Due to the special no-cloning principle, quantum states appear to be very
useful in cryptography. But this very same property also has drawbacks: when
receiving a quantum state, it is nearly impossible for the receiver to efficiently

check non-trivial properties on that state without destroying it. This allows a sender
to send maliciously crafted states (potentially entangled with a larger system) without
being detected.

To illustrate this, let us imagine the following simple goal. A receiver Bob would
like to obtain a quantum state |ψ⟩ sent by Alice and verify, without destroying that
state, that this state belongs to some “quantum language”, say the language composed
of BB84 states (so |ψ⟩ ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩}). Since any direct measurement would
destroy that state, a first solution could be to use a generic quantum secure multiparty
computing protocol (QSMPC) [DNS12, DGJ+20] between the sender and the receiver in
order to generate that state. However, these protocols are interactive and require at least
2 messages (depending on the number of users and on the complexity of the prepared
state, the number of rounds can increase significantly). Therefore, the following question
was left open:

Is it possible to receive via a single message a quantum state and test non-trivial
properties on it non-destructively?
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In this chapter, we will first see in Section 7.1 an overview of our method together
with a presentation of our setup, in Section 7.3 we see how to prove complex properties on
quantum states non-destructively and non-interactively, leading to the notation of Non-
Destructive and Non-Interactive Zero-Knowledge proofs on Quantum States (NIZKoQS).
At the heart of our method are classical-client RSP protocols. We will then see in
Section 7.4 how this idea can be useful to prepare “authorized GHZ states”: this allows a
source to share a GHZ to only a subset of the parties (this subset can be defined in many
different ways as we will see) in such a way that nobody, not even the source can know
who is part of the GHZ state. Notably, this can be useful to run protocols (including
quantum secret sharing) between multiple parties in such a way that nobody knows who
is participating in the protocol. Other applications are also imaginable like “Quantum
Onion-Routing” as discussed in Section 7.1.3.

7.1 Quick Overview and Presentation of the Setup

7.1.1 NIZKoQS

Classical Zero-Knowledge. The first observation that we can do is that, given
an arbitrary quantum state |ψ⟩, it is impossible to extract information from it non-
destructively. However, in classical cryptography there exists a well known method
to check highly non-trivial statements on a classical-string without revealing anything
beyond the fact that the statement is true: this is known as Zero-Knowledge (ZK). Even
better, a prover can prove non-interactively to a verifier that a string s belongs to a given
language L as soon as L is contained into NP1.

The reader not familiar with ZK may find this counter-intuitive. But there exists a
nice analogy to understand how ZK is possible. Let us consider the following problem:
Alice would like to prove to Bob that she knows the solution to a given Sudoku2, without
revealing her solution to Bob. In order to convince Bob, Alice can follow the protocol
described in Figure 7.1: after repeating this protocol enough times, Bob gets convinced
that Alice knows the solution, but learns nothing about this solution. This idea can be
extended to any problem in NP (a similar method can work for graph coloring which is
NP-complete) and can be made non-interactive (the challenge is then generated using a

1NP is the set of languages for which we can verify easily (in polynomial time) using a secret witness
that s ∈ L. However, without this witness, it may be hard to show that s ∈ L.

2The Sudoku is a puzzle game: given a 9× 9 grid having some cells pre-filled with numbers between
1 and 9, the goal is to fill the rest of the grid in such a way that each number between 1 and 9 should
appears exactly once in each line, column and in each of the 9 disjoint sub-grids of 3× 3 contiguous cells.
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random oracle: this is known as the Fiat-Shamir transformation [FS87]) allowing us to
do Non-Interactive Zero-Knowledge proofs (NIZK).

1 4 2 3

2 3 4 1

4 1 3 2

3 2 1 4

⇒

1

4

3

2

⇒

1

4

3

2

⇒
3

⇒
2 4 3 1

Figure 7.1: Illustration of ZK with a small sudoku (in bold). On the first image, Alice
has a solution to the sudoku. Then, she hides this solution by flipping the cards (second
image). Bob challenges Alice to reveal one line (in orange, third picture). Alice shuffles
this line (fourth picture) and shows that it contains all numbers exactly once (last picture).
Bob learns no information beside the fact that this line contains all numbers exactly once.
Then, the process restarts from scratch: Bob can challenge other lines/columns/blocks
until he is convinced that Alice really knows a solution to the sudoku.

NIZQoQS. The QFactory protocols we saw in Chapter 4 were initially designed to
fake quantum channels with classical communication: the classical communication can
be seen as a set of classical instructions producing some quantum states. But it turns out
that classically faking a quantum channels also has a surprising side-effect as it “binds”
a quantum state with a classical string. Since classical communication does not suffer
from the no-cloning theorem, it is now possible to prove statements on the classical
instructions—using your favorite classical NIZK protocol—to indirectly prove statements
on the final produced quantum state. Of course, we need to trust the hardware of the
receiver/verifier (here the server Bob) to be sure that the final quantum state matches
the instructions. This method is therefore non-destructive and non-interactive: a single
message from Alice to Bob is necessary to achieve NIZKoQS if the RSP protocol is itself
non-interactive.

Remark 7.1.1. One may wonder why a single message is necessary since the QFactory
protocols need two messages (a first message from Alice to Bob, and a second from Bob
to Alice). However, the second message is only needed to ensure that Alice can learn
the state obtained by Bob: this message is not necessary for Bob to be sure that the
state he obtained has the appropriate properties. Similarly, in this chapter we will see
protocols to share GHZ states that will use more that a single message: this is because
these protocols do more than NIZK. The NIZK part will typically be witnessed after
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the first message has been received, and the rest of the protocol will exploit the state
produced during this first NIZK stage.

Remark 7.1.2. In the following we will focus on the GHZ-QFactory protocol. Note that
the protocol of [Mah18a] can also be seen as a non-interactive RSP protocol, were the
generated states are XaZb |ψ⟩ for some random one-time-pads a and b, where |ψ⟩ is
determined by the encrypted circuit. Our NIZK approach is quite general and would also
apply to [Mah18a] (or to our UBQCCC protocol if interaction is not an issue). However,
for our applications (authorized GHZ preparation), GHZ-QFactory will be more efficient
as it requires a single superposition instead of n as explained in Section 4.5: for this
reason we will focus on GHZ-QFactory in this chapter.

Note also that some properties are not verifiable non-interactively: in particular, the
proof that Alice sends cannot depend on the measurements done by Bob since Alice does
not know them yet. However, we will see that there exists some non-trivial and interesting
properties that can be verified on the obtained quantum state in a non-interactive manner:
entanglement.

More specifically, if we consider the GHZ-QFactory protocol, the classical message that
is sent to Bob is k, generated from (k, tk)← Gen(1λ,d0) where d0 ∈ {0, 1}n corresponds
to the support—i.e. basically the set of entangled qubits—of the GHZ state that will
be produced by Bob. It is therefore possible to send a classical NIZK proof, together
with k, proving that k has the “appropriate properties”: Notably, we can prove (using tk
as a part of the witness) that (i) the message k is indeed a δ-GHZH capable function3

(ii) that Auth(d0, w) = 1, where Auth can be any efficiently computable function, and w

any secret witness depending on the wanted property on d0(tk). This last function and
witness could be virtually anything, like ensuring that There exists only two indices i ̸= j

such that d0(i) = d0(j) = 1 (i.e. it proves that the final state contains only two entangled
qubits forming a Bell state, w is not needed here), or Either d0[42] = 0 or I know the
private key corresponding to the bitcoin wallet 12c6DSiU4Rq3P4ZxziKxzrL5LmMBrzjrJX
(i.e. it proves that the 42th qubit is entangled to the rest of the GHZ only if the sender is
Satoshi Nakamoto4. . . of course without revealing to the receiver if the sender is Satoshi
Nakamoto; w being here the private key of the Bitcoin wallet of Satoshi). This kind of
property will be particularly interesting in the multi-party AUTH-BLINDdist

can protocol we
will see later.

3In our construction, it boils down to proving that the trapdoor tk has small enough singular values.
4Satoshi Nakamoto is the nickname used by the creator of Bitcoin. Nobody knows the real identity

of Satoshi. . . and therefore Satoshi would certainly not participate in our protocol if there were a risk of
revealing their identity.
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That way, when receiving k and the NIZK proof, Bob can check that the proof is
valid: when producing the quantum state, he will be sure that the properties on k and d0

are valid, and he will therefore obtain (assuming that his hardware is correct) indirectly
(and therefore non-destructively) guarantees on the produced quantum state.

7.1.2 Authorized GHZ states

Setup. We can use the above ideas in a multi-party protocol: the setup that we
consider is the following (note that we also derive below simpler protocols that may be
of independent interest). A quantum server Bob (playing the role of a source) wants to
share a GHZ state between n (weakly5 quantum) applicants. However, the server wants
to filter the applicants such that only a subset S of these applicants—the supported6

applicants—share a part of the GHZ state. This subset can be determined in many
different ways: for instance the supported applicants may correspond to the applicants
knowing a secret password, a signature from a third party Certification Authority, the
private key of a Bitcoin wallet owning more than one thousands Bitcoins. . . However,
the applicants want to be sure that nobody (not even the server) should know whether
or not they are supported (therefore, it is not possible to use a simple authentication
step in which the source directly checks if the applicant knows the secret: we really need
to bound this verification step with the production of the quantum state).

Assumptions. As in the GHZ-QFactory we require the existence of a δ-GHZH capable
family. However, we also require a few more properties: More precisely, we will require
the existence of a local generation procedure (k(i), t

(i)
k )← GenLoc(1λ,d0[i]) such that the

public key of the δ-GHZH capable family is obtainable via k = (k(1), . . . , k(n)) (since k(i)

is enough to fix d0[i], we may write d0[i] := d0(k(i))). Moreover t(i)k can be used to obtain
partial information about the preimages of fk: More precisely, given t

(i)
k and fk(x) one

can obtain the i-th bit of h(x) and given t
(i)
k , b and y = fk(x) = fk(x′), we can obtain

α(i) such that ⊕iα(i) = α := ⊕
i bi(xi ⊕ x′i).

In practice, one can obtain a distributable δ′-GHZcan capable family from a δ-GHZH

capable family (which has an additional property that the two preimages have the form
x = (0, x̄) and x′ = (1, x̄′)). The idea is to sample one δ-GHZH capable function for

5The applicants need only basics quantum skills: depending on the protocol they may have nothing
to do except receiving a state, or may need to apply a few gates.

6We call them supported because they are part of the support of the hidden GHZ state. We may
also refer to this as being the support status of an applicant.
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each d0[i]. Then, we can define our new function to be f
k

(1)
,...,k

(n)(c, x̄(1), . . . , x̄(n)) =
f
k

(1)(c, x̄(1))| . . . |f
k

(n)(c, x̄(n)). More details can be found in Section 7.4.3.

Protocol. In order to achieve the above protocol (called AUTH-BLINDdist
can ), each ap-

plicant will be asked to sample (k(i), t
(i)
k ) ← GenLoc(1λ,d0). Then k(i) will be sent to

the server. In order to prove that they are authorized, each applicant will also include
a NIZK proof confirming, as explained above, that they know a classical witness wi
such that Auth(d0[i], wi) = 1 (the NIZK proof also checks that d0[i] = d0(k(i)) and
that k(i) ∈ K). Since this protocol is a Zero-Knowledge protocol, the server will not be
able to learn any information about d0. In return, the server will have the guarantee
that it will indeed produce a hidden GHZ state whose support corresponds to the set of
authorized applicants. Therefore, the server can run the quantum circuit used in the
GHZ-QFactory protocol (Protocol 2), and distribute each qubit to the corresponding
applicant. Non-supported applicants will just get a random non-entangled state that they
can discard. Supported applicants will share a GHZ state, up to local X or Z corrections:
In order to come back to a canonical GHZ, each applicant will use their local trapdoor
t
(i)
k to compute h(x) so that they can apply the corresponding X correction. Moreover,

in order to compute the α needed to apply the Z correction, all parties will need to run
a Multi-Party Computation (MPC). The reason is that α could leak some information
about the state: therefore the MPC will instead provide to each supported applicant a
linear secret sharing of α, i.e. a random α̂i such that ⊕i∈S α̂i = α (S being the set of
supported applicants). That way, each supported applicant will be able to locally apply a
Z α̂i correction, and it will be equivalent to applying a single Zα gate on the overall state.

Other Protocols. We also derive other simpler protocols of potential independent
interest (they do not require MPC or NIZK, and are useful in our proposed Quantum
Onion-like Routing protocol) in which an additional classical and honest third party,
Cupid7, is in charge of choosing the set of supported applicants. We assume Cupid can
communicate classically with the server, as well as with all applicants using private
channels8.

Note also that these parties may not be always different entities. For example, when
a user wants to send a qubit to a secret recipient, this user could be both considered as
an applicant and as Cupid. Similarly, the server may want to be part of the applicants.

7Besides having a name starting with a ’C’, Cupid, the roman god of love, is famous for sending
arrows at the heart of Humans to designate the beloved among the applicants.

8In practice, secure authenticated channels would be enough if we ensure the length of all exchanged
messages is the same.

180



7.1. QUICK OVERVIEW AND PRESENTATION OF THE SETUP

We propose then 3 simpler protocols (BLIND, BLINDsup and BLINDsup
can) similar to

AUTH-BLINDdist
can , and we also show in Section 7.4.2.3 the impossibility of a desirable

variant of these protocols, BLINDcan. In essence, they are all based on GHZ-QFactory,
except that we leak more or less bits of information about the generated state (we are
then interested in the leakage incurred by this additional information). More precisely,
all these protocols derive from the BLIND protocol, in which Cupid chooses the support
status of each applicant, and at the end of the protocol each supported applicant is
supposed to obtain a generalized GHZ state (i.e. a GHZ state in which we applied some
local X or Z gates), while non-supported applicant obtain random not entangled qubits
in the computational basis (at that step no applicant know if they are supported or not).
The other protocols differ slightly:

• The subscript · can denotes the fact that at the end of the protocol each supported
applicant ends up with a canonical GHZ state instead of a generalized GHZ state.

• The superscript · sup denotes the fact that at the end of the protocol each applicant
knows their own support status, chosen by Cupid.

In term of security, we typically expect that no malicious group of applicants, potentially
colluding with the server, should learn the support status of honest applicants9. In BLIND,
we can even prove that applicants cannot even learn their own support status.

7.1.3 Applications

The GHZ state (and its special case, the Bell pair) is very popular, and appears to be
useful in many protocols, such as in Quantum Secret Sharing [HBB99], Quantum Tele-
portation [BBC+93], Entanglement Distillation [BBP+96a, BBP+96b, BDS+96], Device-
Independent Quantum-Key-Distribution [MY98], Anonymous Transmission [CW05],
Quantum Routing [PWD18, MMG19]. . . In these protocols, a (potentially untrusted)
source is in charge of distributing GHZ states, which are then used differently in the
protocol.

Our protocol AUTH-BLINDdist
can can be used in the aforementioned protocols: in-

stead of sending a GHZ state, the source—playing the role of the server—can run
the AUTH-BLINDdist

can protocol with the clients—replacing the applicants—before the start
of the protocol in order to generate a hidden GHZ state. Then, this resulting state can
be distributed in place of the original GHZ state. The interest is to still obtain statistical

9In BLINDsup
can and AUTH-BLINDdist

can , we expect at least one supported applicant to be honest when
the adversary is allowed to corrupt supported applicants (the identity of this honest applicant may be
unknown to the adversary), otherwise there is a trivial attack against any such protocol.
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security coming from the quantum protocols, but also obtain additional computational
guarantees: the source can filter the participants (like “only billionaires are allowed to
participate”) without learning their identity. Of course, a proper security analysis should
be done for each protocol, notably if the source can collaborate with some applicants. If
the source cannot collaborate with the applicants nor see the exchanged messages, then
the security is more direct: any attack done in our “extended” protocol could also be
done in the original protocol by just asking to the source to simulate the generation of
the cryptographic assumptions.

For instance, a simple application of the AUTH-BLINDdist
can protocol would be to allow

Bob to teleport a quantum state |ψ⟩ to an unknown applicant knowing only its public
key (for instance corresponding to a Bitcoin wallet). The applicant would be allowed to
hide its identity to Bob, and Bob can be sure that only applicants knowing the private
key of the wallet could obtain the state |ψ⟩. In addition, if several applicants know the
secret, then Bob is in fact secret sharing its qubit |ψ⟩ among all applicants knowing this
secret [HBB99].

Our protocol BLINDsup
can could also be used to achieve new functionalities, such as a

Quantum Onion-like Routing in order to route a quantum message through an untrusted
quantum network (relying on a classical onion routing infrastructure), hiding the exact
taken route. The idea would be to ask to each intermediate server (node) in the path
of the message to blindly generate a large state in which a Bell pair is hidden (the first
half of the Bell pair can be at a fixed position kept by the sender, and the other half
would be randomly placed among the potential receivers) and to share this state with
the neighbor nodes: this Bell pair could then be used to teleport the qubit to the next
node, without revealing its identity to the previous node. One may have two objections
against this protocol:

• One may think that we could achieve something similar by simply asking to the
sender to directly send a state in which the Bell pair is hidden to the first server.
However, this approach scale exponentially with the depth of the route: if we do
not want to reveal at all to an intermediate node the identity of the next node, we
also need to send the hidden Bell pair for the next node, together with dummies
for the nodes that will not be taken. When doing this approach recursively, the
number of qubits to send scales exponentially with the depth of the route.

• One may say that it may not be necessary to hide to each node the next node in
the route (classically this is not the case). However, we can argue that a quantum
network will be likely to be much smaller and centralized than a classical network
(with maybe only a few quantum routers), and it would certainly be easier to find
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a path in the classical network which is not controlled by the adversary than a
path in the quantum network.

7.2 Introduction to Classical Zero-Knowledge and
Multiparty Computing

In this section, we introduce classical Zero-Knowledge and Multiparty Computing as we
used them internally in our approaches.

7.2.1 Classical Zero-Knowledge proofs and arguments for NP

In order to obtain NIZKoQS, we need to rely on a classical Zero-Knowledge (ZK) protocol
for NP (to obtain NIZKoQS, we also expect the protocol to be non-interactive10, but
interactivity does not change security or correctness). Intuitively, in a ZK protocol for
a language L ∈ NP, a prover must convince a verifier that a word x belongs to L, in
such a way that the verifier should not learn anything more about x beyond the fact
that x belongs to L. Because L is in NP, L is described by a relation RL, in such a way
that a word x belongs to L iff there exists a witness w such that w ∈ RL(x). Moreover,
deciding if a witness w belongs to RL(x) must be doable in polynomial time.

We will now formalize the above security statements, taking the definition from
[BS20]. Note that an honest verifier V outputs a single bit (1 if they accept and 0 if they
reject), but a malicious verifier V∗ can output an arbitrary quantum state.

Definition 7.2.1 (Computational indistinguishability [BS20]). Two maps of quantum
random variables X := {Xi}λ∈N,i∈Iλ

and Y := {Yi}λ∈N,i∈Iλ
over the same set of indices

I = ∪λ∈NIλ are said to be computationally indistinguishable, denoted by X ≈c Y , if for
any non-uniform quantum polynomial-time distinguisher D := {(Dλ, ρλ)}λ∈N, there exists
a negligible function µ such that for all λ ∈ N, i ∈ Iλ,

|Pr [Dλ(Xi, ρλ) = 1 ]− Pr [Dλ(Yi, ρλ) = 1 ] | ≤ µ(λ) (7.1)

Definition 7.2.2 (Post-Quantum Zero-Knowledge Classical Protocol [BS20, definitions
2.1 and 2.6]). Let (P,V) be a protocol between an honest PPT prover P and an honest

10Internally, we use in a blackbox manner an arbitrary classical NIZK protocol: therefore, even if we
don’t rely directly on the Random Oracle Model (ROM) or on the Common Reference String model
(CRS), additional assumptions will be required depending on the assumptions used internally by the
chosen NIZK. However, our protocol does not need any additional assumptions besides these ones and
the hardness of LWE.
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PPT verifier V. Then (P,V) is said to be a Post-Quantum Zero-Knowledge (ZK) Classical
Protocol for a language L ∈ NP if the following properties are respected:

1. Perfect Completeness: For any λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(x),

Pr [ OUTV(P(w, x)↭ V(x)) = 1 ] = 1 (7.2)

2. Soundness: The protocol satisfies one of the following.

• Computational Soundness: For any non-uniform QPT malicious prover
P∗ = {(P∗λ, ρλ)}λ∈N, there exists a negligible function µ(·) such that for any
security parameter λ ∈ N and any x ∈ {0, 1}λ \ L,

Pr [ OUTV(P∗λ(ρλ, x)↭ V(x)) = 1 ] ≤ µ(λ) (7.3)

A protocol with computational soundness is called an argument.
• Statistical Soundness: There exists a negligible function µ(·) such that

for any unbounded prover P∗, any security parameter λ ∈ N and any x ∈
{0, 1}λ \ L,

Pr [ OUTV(P∗(x)↭ V(x)) = 1 ] ≤ µ(λ) (7.4)

A protocol with statistical soundness is called a proof.

3. Quantum Zero Knowledge: There exists a QPT simulator Sim such that for
any QPT verifier V∗ = {(V∗λ, ρλ)}λ∈N,

{OUTV∗
λ
(P(w, x)↭ V∗λ(ρλ, x))}λ,x,w ≈c {Sim(x,V∗λ, ρλ)}λ,x,w (7.5)

where λ ∈ N, x ∈ L ∪ {0, 1}λ, w ∈ RL(x), and V∗ is given to Sim by sending the
circuit description of V∗.

A Non-Interactive ZK protocol will be denoted NIZK.

In our last protocol, in order to get stronger guarantees, we may also want to ensure
that the prover “knows” the secret (note that this property is not used extensively besides
the fact that it provides more guarantees: therefore the reader may skip this part).
Therefore, to get stronger guarantees, we will require the ZK protocol to also be a Proof
of Knowledge protocol. Intuitively, we would like to check that any malicious prover P∗

that can convince a verifier with a non-negligible probability has the witness w “encoded
in its source code or memory”. We formalize this notion by saying that there exist a QPT
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circuit K, the extractor, which can recover w with non-negligible probability from a full
description of P∗ and its input.

This non-negligible probability is usually enough, since being able to obtain a witness
with non-negligible probability is usually sufficient to break the security: for example it
could be used to forge a signature and break the unforgeability property as explained in
[Unr12].

Definition 7.2.3 (Post-Quantum Zero-Knowledge Proof of Knowledge [Unr12]). We
say that a Post-Quantum Zero-Knowledge protocol (P,V) for a relation RL is a Proof of
Knowledge protocol, if it is quantum extractable with knowledge error κ = negl(λ), i.e.
if there exists a constant d > 0, a polynomially-bounded function p > 0, and a QPT K
such that for any interactive QPT malicious prover P ∗, any polynomial l, any security
parameter λ ∈ N, any state ρ, and any x ∈ {0, 1}λ, we have:

Pr [ OUTV (P∗(ρ, x)↭ V(x)) = 1 ] ≥ κ(λ)

=⇒Pr [w ∈ RL(x) | w ← K(P∗, ρ, x) ] ≥ 1
p(λ) (Pr [ OUTV (P∗(ρ)↭ V(x)) = 1 ]− κ(λ))d

Several Post-Quantum ZK protocols have been proposed in the literature [Wat09,
Unr12, BS20] and have been shown to obey properties similar to both Definitions 7.2.2
and 7.2.3. Moreover, [LZ19, DFM+19] explain how to obtain quantum-secure NIZK
(which are also Proof of Knowledge) using the Fiat-Shamir transformation and the
hardness of the LWE problem in a Quantum Random Oracle model. In the following, we
are agnostic of the used NIZK protocol and we assume the existence of a NIZK protocol
obeying Definitions 7.2.2 and 7.2.3.

7.2.2 Classical Multi-Party Computations

In the AUTH-BLINDdist
can protocol, we also need to use a classical11 Multi-Party Compu-

tation (MPC) protocol Π. A MPC protocol works as follows: given n (public and
deterministic) functions (f1, . . . , fn), at the end of the protocol involving n parties
P1, . . . ,Pn, we expect party Pi to get fi(x1, . . . , xn), where xj is the (secret) input of
the party Pj. Moreover, we expect that no party can learn anything more than what
they can already learn from fi(x1, . . . , xn). For simplicity, we define f(x1, . . . , xn) =
(f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)).

11But of course post-quantum secure.
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We can formalize the above security statements using the usual (quantum) real/ideal
world paradigm (this is similar to Constructive Cryptography except that here we have
only sequential security: this is know as the standalone model).

Informally, the protocol Π will be said to be secure if it is impossible to distinguish
two “worlds”. On the one hand, we have a real world in which an adversary A = {Aλ}λ∈N
can corrupt a subset M ⊊ [n] of parties and interact in an arbitrary way with the other
honest parties. On the other hand, we have an ideal world, in which a simulator Sim
interacts with a functionality, this functionality behaving as a trivially-secure trusted
third-party. If these two worlds are indistinguishable, it means that the protocol is
“secure” because any secret obtained from the real world would also be obtainable from
the ideal world. . . which is impossible because the ideal world is trivially secure.

More precisely, we define, following [ABG+21], the real and ideal world as follows,
where x⃗ := (x1, . . . , xn) is the inputs of the parties:

Definition 7.2.4 (REALΠ,A(λ, x⃗, ρλ)). Aλ is given ρλ, and gives a subset M ⊊ [n] of
corrupted (malicious) parties. Then Aλ receives the inputs xi of all corrupted parties
Pi (i ∈M), sends and receive all the messages on the behalf of these corrupted parties,
and communicates in an arbitrary quantum polynomial time way with the honest parties
that follow the protocol Π. At the end of the interaction, Aλ outputs an arbitrary state
ρ, and we define as y⃗ the output of the honest parties Pj, j /∈M. Finally, we define
REALΠ,A(λ, x⃗, ρλ) as the random variable corresponding to (ρ, y⃗).

Definition 7.2.5 (IDEALf,Sim(λ, x⃗, ρλ)). Sim (playing the role of the adversary) receives
ρλ, outputs a set M ⊊ [n] of corrupted parties, interacts with a trusted party (called the
ideal functionality) defined below, and outputs at the end a state ρ. The ideal functionality
also outputs at the end a message y⃗ corresponding to the output of the trusted party. We
then define IDEALf,Sim(λ, x⃗, ρλ) as the random variable corresponding to (ρ, y⃗). Now we
define the ideal functionality:

• The ideal functionality receives the set M ⊊ [n] a subset of corrupted parties, and
for each party Pi, it receives an input x′i: if Pi is honest (i /∈M), we have x′i = xi,
otherwise x′i can be arbitrary.

• Then, it computes (y1, . . . , yn) := f(x′1, . . . , x′n), and sends {(i, yi)i∈M} to the simu-
lator.

• The simulator can choose to abort by sending a message ⊥ to the ideal functionality.
Otherwise it sends a “continue” message ⊤. If the message received by the ideal
functionality is ⊥, then it outputs ⊥ to each honest party, which is formalized by
outputting y⃗ := {(i,⊥)}i/∈M. Otherwise, it outputs y⃗ := {(i, yi)}i/∈M.
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Definition 7.2.6 (Secure MPC [ABG+21]). Let f be a deterministic function with n

inputs and n outputs, and Π be an n-party protocol. Protocol Π securely computes f
if for every non-uniform quantum polynomial-time adversary A = {Aλ}λ∈N corrupting
a set of at most n − 1 players, there exists a non-uniform quantum polynomial-time
ideal-world adversary Sim such that for any combination of inputs x⃗ ∈ ({0, 1}∗)n and any
non-uniform quantum advice ρ = {ρλ}λ∈N,

{REALΠ,A(λ, x⃗, ρλ)}λ∈N ≈c {IDEALf,Sim(λ, x⃗, ρλ)}λ∈N (7.6)

7.3 Non-Interactive Zero-Knowledge Proofs on
Quantum States

In this section we first define our new concept of Non-Interactive and Non-Destructive
Zero-Knowledge proofs on Quantum States (NIZKoQS), and define a protocol achieving
NIZKoQS. The more involved protocol AUTH-BLINDdist

can defined in the next section will
also exploits NIZKoQS (but this protocol will have more than one message as it is also
consuming the state produced by the NIZKoQS), while the other simpler protocols will
only rely on the correctness (or completeness) of the following NIZKoQS protocol. Before
giving the formal definition, let us motivate and describe informally the definition.

7.3.1 Intuitive motivation

The formal definition will be defined in the next section, but we first motivate informally
our definition here.

Quantum language. In classical NIZK, a language L is a set of strings, so similarly
we will define a quantum language LQ as a set of quantum states. For instance, we could
consider:

• the quantum language made of BB84 states LBB84
Q = {|0⟩ , |1⟩ , |+⟩ , |−⟩},

• the quantum language Lex
Q = {|d⟩ ± |d⊕ d0⟩ | (d,d0) ∈ ({0, 1}n)2,d0[1] =

1, wH(d0) = 2} (wH denotes the Hamming weight), corresponding to all hid-
den GHZ states whose first qubit is supported and where the support has size 2
(i.e. only two qubits are entangled forming a Bell state, where one of these qubits
is at the first position),

• but we can also consider quantum languages referring to classical secrets, for instance
if pk is a public key (say of a bitcoin wallet), and if Verpk

(sk) = 1 iff sk is the
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private key of pk, we can define Lpk
Q = {|d⟩± |d⊕ d0⟩ | (d,d0) ∈ ({0, 1}n)2,d0[1] =

0 ∨ (d0[1] = 1 ∧ ∃sk, Verpk
(sk) = 1)} that informally allows the prover to “send” a

hidden GHZ state where the first qubit is supported only if the prover knows the
private key of pk.

Classically, both the prover and the verifier typically have a copy of the word x, and
since information can be copied classically, the verification process cannot “destroy” x.
Quantumly, this is not true anymore, therefore, instead of saying that all parties agree
on ρ before the protocol, what matters is that at the end of the protocol, the verifier
should end up with a ρ ∈ LQ.

Relation, witness and quantum ZK. Classically, to check if a word x belongs to a
language L, we usually define a relation R between a witness w and the word, saying
that x ∈ L⇔ ∃w,wRx. The prover typically knows the witness w and the ZK property
ensures that the verifier has no way to learn the witness w, formalizing the fact that
the verifier learns nothing beyond the fact that the statement is true. Quantumly, we
mimic this definition by defining a relation between classical witnesses (or classes12) ω
and quantum states R, saying that a quantum state ρ belongs to a quantum language
LQ if and only if there exists ω such that ωRρ. Similarly, we want to ensure that the
verifier has no way to learn ω.

However, even if our definition does not say anything more about witnesses, we need
to choose them appropriately to obtain a meaningful and secure protocol. Moreover, at
that stage it may not even be clear what could be used as a witness. For instance, in
the quantum language LBB84

Q defined above, what would be the witness of |0⟩? Because
the ZK property ensures that no information leaks about the witness, while we typically
want to ensure that no information is leaked about the received state, one could naively
say that the witness is the classical description of the state. Unfortunately if each
witness ωρ is in a 1-to-1 correspondence to its corresponding state ρ ∈ LQ, then it
would be impossible to obtain the ZK property: for instance, given a random state in
LBB84

Q = {|0⟩ , |1⟩ , |+⟩ , |−⟩}, it is possible to rule out one of the 4 states: for instance by
measuring the state in the computational basis, if we measure b we know that the state
can’t be |1− b⟩ and therefore we know that the witness can’t be ω|1−b⟩, contradicting
the ZK property.

12Unlike in classical ZK, the witness ω cannot be used to verify that a quantum state belongs to the
quantum language, for this reason the term class may be more appropriate. This also justifies the usage
of a different notation ω instead of w.
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To overcome this issue, a single witness ω must characterize a class of states. For
instance, for the language LBB84

Q we will define two witnesses 0 and 1 characterizing the
basis of the state and we therefore define the relation 0R |0⟩, 0R |1⟩, 1R |+⟩ and 1R |−⟩.
These classes will be used to characterize two of the three wanted properties:

• Completeness (or correctness): An honest prover should be able to choose ω and
generate on the side of the verifier a state in Lω := {ρ | ωRρ}.

• Zero-Knowledge: A malicious verifier should be unable to learn the witness
ω with significant advantage over a random guess. Because of the completeness
property, the verifier should therefore be unable to learn the class Lω chosen by
the prover that was supposed to contain the target state.

• Soundness: Finally we also expect that if the prover is malicious, then an honest
verifier will obtain a state in L whenever it accepts. (Note that this property does
not depend on R)

From the above properties, it clearly appears that when the relation R is thinner
(i.e. when |Lω|’s are smaller and the number of witnesses increases), we get a stronger
result: indeed, an honest prover can choose more precisely the sent state and a malicious
verifier is more confused as there are more classes to which a state could belong to. In
particular, it is always possible to define a trivial NIZKoQS protocol for any language
LQ if there is a single witness ω0 such that ∀ρ ∈ LQ, ω0Rρ: the prover would not do
anything and the verifier would simply generating an arbitrary state in LQ. However,
the guarantees are quite poor in that case as the verifier can fully describe the state. . .
For this reason, we will focus on non trivial relations, and we will always specify the
relation associated to a quantum language.

Note that in some cases, it may be cumbersome to write separately the language
and the relation, especially when the witness is an arbitrary label and when only the
equivalence class formed by the relation matters. In that case, we may abuse notations
and write directly L = {Lω}ω, like LBB84

Q = {{|0⟩ , |1⟩}, {|+⟩ , |−⟩}}. This more succinct
notation makes it clearer that the prover can choose in advance the basis (computation
or Hadamard) of the state obtained by the verifier, that an honest verifier would always
obtain a BB84 state, and that a malicious verifier would be unable to learn the basis of
the output state. For the other above examples of languages Lex

Q and Lpk
Q , the witness

that we will consider is the support d0 of the GHZ state (therefore no malicious verifier
will be able to learn any information about d0 beyond the fact that it respects the
constraints that are specified in the language).
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7.3.2 Formal definition of NIZKoQS

We can now provide the formal definition of (NI)ZKoQS.

Definition 7.3.1 (Zero-Knowledge Proof on Quantum State (ZKoQS)). Let (P,V) be
a protocol between an honest QPT prover13 P and an honest QPT verifier V (that also
outputs a final quantum state). Let E = ∪n∈NL◦(Hn) be the set of finite dimensional
quantum states (where Hn is the Hilbert space of dimension n), R ⊆ {0, 1}∗ × E be
a relation between bit strings (called witnesses or classes) and quantum states, and
LQ = {ρ ∈ E | ∃ω, ωRρ} be a quantum language defined by R. Then (Pλ,Vλ) is said to
be a Zero-Knowledge proof on Quantum State (ZKoQS) for LQ if the following properties
are respected:

1. Completeness: There exists a negligible function µ( ·) such that for any λ ∈ N
and ω such that ∃ρ′ ∈ L, ωRρ′,

Pr [ a = 1 and ωRρ | (a, ρ)← OUTV⟨Pλ(ω),Vλ⟩ ] = 1− µ(λ) (7.7)

2. Soundness: For any non-uniform QPT malicious prover P∗ = {(P∗λ, σλ)}λ∈N,
there exists a negligible function µ(·) such that for any security parameter λ ∈ N,

Pr [ a = 1 and ρ /∈ L | (a, ρ)← OUTV⟨P∗λ(σλ),Vλ⟩ ] ≤ µ(λ) (7.8)

When P∗ is unbounded, it is called a proof otherwise an argument.

3. Quantum Zero Knowledge: There exists a QPT simulator Simλ such that for
any QPT verifier V∗ = {(V∗λ, σλ)}λ∈N,

{OUTV∗
λ
⟨Pλ(ω),V∗λ(σλ)⟩}λ,ω ≈c {Simλ(V∗λ, σλ)}λ,ω (7.9)

where λ ∈ N, ω ∈ {ω | ∃ρ, ωRρ}, and V∗ is given to Simλ by sending the circuit
description of V∗.

A Non-Interactive ZKoQS protocol—in which a single message is sent, from the prover
to the verifier—will be denoted NIZKoQS.

Now, we define a protocol where we can prove any property on the set of entangled
qubits of a hidden GHZ state in a NIZKoQS fashion.

13In our case the prover is actually PPT.
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Remark 7.3.2. Note that we also require here the existence of CheckTrapdoor(d0, tk, k)
that will check if k ∈ K and if d0 corresponds to the constant involved in the XOR
property of k. The reason is that we cannot anymore be sure that Alice (the prover)
is honest: therefore we need to check that the k sent by Alice was honestly prepared.
This is particularly important when Kλ ⊆ {0, 1}∗ and when there exists no efficient
algorithm to decide if a bit string k(i) is indeed an element of Kλ. For example, with our
construction, it is easy to produce a key k′ that is indistinguishable from a key k ∈ K,
and such that the function fk′ is injective instead of δ-2-to-1. Our construction based on
LWE does guarantee that there exists a function CheckTrapdoor, which internally checks
if the singular values of the trapdoor R are small enough and if the norm of (s0, e0) is
small enough (see Lemmas 5.3.2 and 5.3.5 for more details).

Protocol 8 BLIND-ZK
Assumptions: There exists a negl(λ)-GHZH capable family of functions (Defini-
tion 4.2.1), together with an efficient function CheckTrapdoorλ(d0, tk, k) outputting
true if k ∈ K and if d0 = d0(tk).
Parties: A classical sender/prover (Alice) and a quantum receiver/verifier (Bob).
Common inputs: The size n of the hidden GHZ and an efficiently computable
function Auth : {0, 1}n ×W → {0, 1} where W is a set witnesses.
Alice’s input: The support d0 ∈ {0, 1}n of the hidden GHZ state and a witness
w ∈W such that Auth(d0, w) = 1.
Bob’s output: Bob can reject or accept and output a quantum state if he thinks that
there exist d0 and w such that Auth(d0, w) = 1 and such that the quantum state is a
hidden GHZ state of support d0.
Protocol:

1. Alice generates (k, tk) ← Gen(1λ,d0), a NIZK proof π proving that
CheckTrapdoor(d0, tk, k) ∧ Auth(d0, w) = 1 (the witness being (d0, tk, w) and
the word k) and sends (k, π) to Bob.

2. Bob checks that π is correct (if not it rejects), performs the quantum circuit
described in GHZ-QFactory (described in Remark 4.2.2) to obtain a hidden GHZ
state, and outputs that state.

Theorem 7.3.3 (NIZKoQS). Let n ∈ N be the size of the produced hidden GHZ state
and δ = negl(λ). The protocol BLIND-ZK (where Alice plays the role of the prover P and
Bob the verifier V) is a NIZKoQS for the quantum language defined by all hidden GHZ
states ρ on n qubits whose support d0 is such that there exists w such that Auth(d0, w)
(defining the relation d0Rρ).
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Proof. The protocol is non interactive since a single message (k, π) is sent (the rest of
the proof will also work for interactive protocols). The completeness is direct given
the fact that the protocol is correct (this is a direct consequence of the correctness of
GHZ-QFactory), that the NIZK is complete, and that δ is negligible. The soundness
property relies on the soundness property of the classical NIZK protocol, and again on
the correctness of the circuit performed by the server: the probability of accepting a k
which is not in Kλ or such that there exists no w such that Auth(d0, w) is negligible; the
correctness of the protocol is enough to conclude that the hidden GHZ has the expected
properties.

For the Zero-Knowledge property, we define the following simulator, where SimZK is
the simulator of the classical (NI)ZK protocol, and k ⇝ V∗λ is the machine obtained by
running V∗λ, and sending k as first message:

Simλ(V∗λ, σλ)

1 : d′0 $← {0, 1}n

2 : (k′, tk′)← Gen(1λ,d′0)
3 : return SimZK(k′, k′ ⇝ V∗λ, σλ)

To prove that the output of Simλ(V∗λ, σλ) is indistinguishable from the real world, we
define an hybrid distribution:

Game1(d0,V∗λ, σλ)

1 : (k, tk)← Gen(1λ,d0)
2 : return SimZK(k, k ⇝ V∗λ, σλ)

First, one can see that {Game1(d0,V∗λ, σλ)}λ,d0 ≈c {Simλ(V∗λ, σλ)}λ,d0 . Indeed, if a
non-uniform distinguisher D can distinguish between these two distributions, then we can
use D to break the game IND-D0A

Gen(λ) by simply sending for any λ a random d0 and the
d0 which maximizes the distinguishing probability (anyway, D is already non-uniform).
Then, {Game1(d0,V∗λ, σλ)}λ,d0 ≈c {OUTV∗

λ
⟨Pλ(d0),V∗λ(σλ)⟩}λ,d0 since Game1 is exactly

the same as the RHS, except that we replaced the actual ZK protocol with its simulator,
which is an indistinguishable process by definition of ZK.
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7.4 Multi-Party Generation of Authorized Hidden
GHZ States

7.4.1 Cryptographic requirements

All the protocols are based on the existence of a δ-GHZH capable family of functions,
already defined in Definition 4.2.1. This property is enough to prove the security of
BLIND and BLINDsup against an arbitrary corruption of parties, and can be used to prove
the security of BLINDcan and BLINDsup

can when the adversary corrupts only the server and
the non-supported applicants. However, if we want to prove the security of these last
two protocols in a stronger attack model, namely when the adversary can also corrupt
some supported applicants, we also require our function to have a stronger property.
Intuitively, the PartInfo function will list the messages to send to all applicants: if it
contains a ✗ for applicant i, it means that applicant i is not part of the support of the
GHZ, if it is a 0 or a 1, it means that the applicant gets a GHZ canonical state—up
to a local X correction if it is a 1—and, if it is a ⊥, it means that the protocol aborts
“locally”.

Remark 7.4.1. This local abort is interesting since it triggers when y has only one
preimage, and this means that the server is malicious with overwhelming probability14.
Note that one may want to send this abort bit to all applicants, however it is not yet
known if leaking this bit to other corrupted applicants could reduce the security of the
protocol (for example, it is not clear if a malicious server could force the protocol to
abort when one specific honest applicant is not part of the GHZG). To avoid that issue,
we introduce this notion of local abort, that tells locally to participants if the server was
behaving honestly. Note that it is important to make sure that this abort bit do not leak
to the adversary later, otherwise the security is not guaranteed anymore.

Definition 7.4.2. A δ-GHZH capable family of function {fk} is said to be δ-GHZcan

capable if this additional property is respected:
• indistinguishability with partial knowledge: We want to show that, by leaking

some information about the “key” of the GHZ state owned by malicious applicants,
we do not reveal additional information about the support status of applicants. More
precisely, there exists a PPT algorithm PartInfo : Tλ × Yλ → {0, 1,✗,⊥}n with
the following properties:

14This is the case when δ = negl(λ), which is possible to obtain using LWE with superpolynomial
noise ratio.
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– correctness: ∀k ∈ Kλ, y ∈ Yλ, and v ← PartInfo(tk, y):
∗ y has exactly two preimages iff there is no partial abort (see discussion

above): |f−1
k (y)| = 2 iff ⊥ /∈ v

∗ for all i, if v[i] ∈ {0, 1} then d0[i] = 1, and if v[i] = ✗, then d0[i] = 0
(required to make sure ✗ is sent only to non-supported applicants and that
0/1 is sent only to supported applicants).

∗ if |f−1
k (y)| = 2, ∃u ∈ {h(x), h(x′)}, such that ∀i, if d0[i] = 1 then

v[i] = u[i] (required to make sure that all corrections are correct).
– security: The game on the left is impossible to win with non negligible

advantage for any QPT adversary A = (A1,A2,A3) (note that M is intuitively
the set of malicious corrupted applicants, and the condition line 2 is added
because otherwise there is a trivial uninteresting way to distinguish).

IND-PARTIALA
Gen,PartInfo(λ)

1 : (M,d(0)
0 ,d(1)

0 )← A1(1λ)

2 : if ∃i ∈M,d(0)
0 [i] ̸= d(1)

0 [i] : return false fi
3 : c $← {0, 1}
4 : (k, tk)← Gen(1λ,d(c)

0 )
5 : y ← A2(k)
6 : v ← PartInfo(tk, y)
7 : c̃← A3({(i, v[i])}i∈M)
8 : return c̃ = c

For our protocol AUTH-BLINDdist
can , we also need to make sure that this family of

functions can be computed in a distributed manner among users:

Definition 7.4.3. A δ-GHZcan capable family of function {fk} is said to be distributable
if the above procedures can be computed after gathering partial results from the parties.
More precisely:

• There exists GenLoc, a “local” generation procedure such that sampling (k, tk) ←
Gen(1λ,d0) can be done by first sampling for all i: (k(i), t

(i)
k ) ← GenLoc(1λ,d0[i])

and defining k := (k(1), . . . , k(n)) and tk := (t(1)
k , . . . , t

(n)
k ). We will denote as Kλ,Loc

the set of such k(i), and we assume that K = Kn
λ,Loc.

• Similarly, there exists PartInfoLoc, a “local” version of PartInfo such that sam-
pling v ← PartInfo(tk, y) can be done by sampling for all i: v[i]← PartInfoLoc(t(i)k , y).
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• Finally, there exists a method PartAlphaLoc such that for any bit string b and for any
y such that f−1

k (y) = {x, x′} with x ̸= x′ we have ⟨b, x⊕x′⟩ = ⊕iPartAlphaLoc(i, t(i)k , y, b).
Moreover, as discussed in Remark 7.3.2, we cannot assume anymore that people running
these functions will be honest. Therefore, if we want to make sure that a non-supported
malicious applicant cannot alter the state obtained by supported applicants (for example
by providing a function which is not δ-2-to-1), we also require the existence of a circuit
CheckTrapdoorλ(d0[i], t(i)k , k(i)) that returns true iff k(i) ∈ Kλ,Loc and if k(i) is the public
key corresponding to the trapdoor t(i)k , embedding the bit d0[i]. This circuit can in particular
be combined with a ZK protocol to prove in a Zero-Knowledge way that k(i) ∈ Kλ,Loc.

We also provide in Section 7.4.3 a generic construction that turns a δ-GHZH capable
family of functions into a δ′-GHZcan capable distributable family of functions, with
δ′ = 1− (1− δ)n ≤ δn. In particular, if δ is a negligible function of λ as in Theorem 5.3.7
and n = O(λ), δ′ is negligible.

7.4.2 The different protocols

In this section, we define the protocols BLIND (Protocol 9), BLINDsup (Protocol 10),
BLINDsup

can (Protocol 11) and finally our main protocol AUTH-BLINDdist
can (Protocol 12). We

also prove in Section 7.4.2.3 the impossibility of BLINDcan.

7.4.2.1 The protocol BLIND

We define now the protocols BLIND (Protocol 9), which is the basic building block of all
the other protocols. This protocol is basically like GHZ-QFactory except that a trusted
classical party, Cupid, is in charge of choosing the support of the hidden GHZ state,
and that the output state is distributed among the applicants (one qubit per applicant),
who just need to store the received qubit. Besides the protocol itself, what interests us
here (and more importantly, in the coming protocols) is how security degrades when
information is leaked about the hidden GHZ state.

Lemma 7.4.4 (Correctness of BLIND and BLINDsup). At the end of an honest run of
protocol BLIND, when y has exactly two distinct preimages x, x′ (which occurs with
probability 1− δ according to Definition 4.2.1, which is overwhelming when we use the
construction defined in Theorem 5.3.7), the state shared between all applicants is a hidden
GHZ state |d⟩+ (−1)α |d′⟩ state, with:

d = h(x) d′ = h(x′) α =
⊕
i

bi(xi ⊕ x′i) = ⟨b, x⊕ x′⟩ (7.10)
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Protocol 9 BLIND
Assumptions: There exists a δ-GHZH capable family of functions with δ = negl(λ).
Inputs: Cupid gets as input d0 ∈ {0, 1}n, a bit string describing the final supported
applicants: applicant ai will be supported iff d0[i] = 1. λ ∈ N is a public, fixed, security
parameter.
Protocol:

1. Cupid generates (k, tk)← Gen(1λ,d0), and send k to the server.
2. Bob performs the circuit done in the GHZ-QFactory protocol (circuit in Figure 4.1).

Then, he sends (y, b) to Cupid, and for all i, Bob send the ith output qubit to
applicant ai.

3. Each applicant just receives and stores the qubit sent by the server.

In particular, since by definition of fk we have d0 = h(x)⊕ h(x′) = d⊕ d′, the support
of the hidden GHZ is d0.

Proof. This is a direct consequence of the correctness of GHZ-QFactory (Lemma 4.3.3).

We show now that at the end of a fully malicious interaction during the protocol
BLIND, where all applicants and the server can be fully malicious and can all collude
together, the set of supported applicants is completely hidden:

Lemma 7.4.5 (Security of BLIND). If we define a game following the spirit of IND-CPA
security, no QPT adversary A = (A1,A2) can win the game IND-BLIND with probability
better than 1

2 + negl(λ).

IND-BLINDA
Gen(λ)

1 : (d(0)
0 ,d(1)

0 )← A1(1λ)
2 : c $← {0, 1}
3 : (k, tk)← Gen(1λ,d(c)

0 )
4 : (y, b, c̃)← A2(k)
5 : // No more interaction

6 : return c̃ = c

Proof. This is a direct consequence of the soundness of GHZ-QFactory shown in Lemma 4.3.4.
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7.4.2.2 The protocol BLINDsup

We describe now the protocol BLINDsup (Protocol 10). In this protocol, all the applicants
will obtain a qubit part of a hidden GHZ state, and they will learn their own support
status. However, they will not know the “key” of the hidden GHZ state.

Protocol 10 BLINDsup

Assumptions: Same as BLIND (δ-GHZH capable family with δ = negl(λ)).
Inputs: Same as BLIND: Cupid gets d0 and λ.
Protocol:

1. Run the protocol BLIND, so that Cupid gets (b, y) and each applicant ai the i-th
qubit

2. For all i, Cupid sends d0[i] to applicant ai, so that each applicant knows whether
they are supported or not.

Now, in order to prove the security of the BLINDsup protocol, we first need to define
what we mean by security. Since in this protocol Cupid reveal to all applicants their
respective support status, we cannot use the previous definition of security.

We show now that if we allow in the protocol BLINDsup the fully malicious server Bob
to corrupt an arbitrary subset of applicants, then the support status of the remaining
honest applicants is completely hidden:

Lemma 7.4.6 (Security of BLINDsup). No QPT adversary A = (A1,A2,A3) can win the
game IND-BLINDsup with probability better than 1

2 + negl(λ). In the following, M is the
set of malicious applicants corrupted by Bob, and the condition ∀i ∈M,d(0)

0 [i] = d(1)
0 [i]

is required to avoid a trivial uninteresting distinguishing strategy.

Proof. To prove the security of this scheme, we will assume by contradiction that
there exists an adversary A = (A1,A2,A3) that can win the game IND-BLINDsup with
probability pA := 1

2 + 1
poly(λ) , and we will construct an adversary A′ = (A′1,A′2) that

can win the game IND-BLIND with a non negligible advantage (which is impossible by
assumption). So we define A′1(λ) as follows: A′1 runs in a blackbox way (M,d(0)

0 ,d(1)
0 )←

A1, returns (d(0)
0 ,d(1)

0 ) and keeps (M,d(0)
0 ) in its internal state. We then define:

A′2(k, state1 := (M,d(0)
0 )) := (y, b)← A2(k); c̃← A3({(i,d(0)

0 [i])}i∈M); return c̃ (7.11)

It is then easy to see that A′ wins the game IND-D0 with probability greater than pA.
Indeed, when A1 outputs a (M,d(0)

0 ,d(1)
0 ) that does not respect the condition ∀i ∈

M,d(0)
0 [i] = d(1)

0 [i], then A always lose (while A′ may win the game). Moreover, when
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IND-BLINDsupA
{fk}(λ)

1 : (M,d(0)
0 ,d(1)

0 )← A1(1λ)

2 : if ∃i ∈M,d(0)
0 [i] ̸= d(1)

0 [i] :
3 : return false fi
4 : c $← {0, 1}
5 : (k, tk)← Gen(1λ,d(c)

0 )
6 : (y, b)← A2(k)
7 : // The adversary has only access

8 : // to the messages sent by Cupid

9 : // to corrupted applicants:

10 : c̃← A3({(i,d(c)
0 [i])}i∈M)

11 : return c̃ = c

the condition is respected, since {(i,d(0)
0 [i])}i∈M = {(i,d(1)

0 [i])}i∈M = {(i,d(c)
0 [i])}i∈M, we

can replace the input of A′3 with {(i,d(c)
0 [i])}i∈M: the game is now exactly equivalent to

IND-BLINDsup, so in that case A′ win with the exact same probability as A. Therefore, A′
wins the game IND-D0 with probability greater than pA = 1

2 + 1
poly(n) : contradiction.

7.4.2.3 The impossible protocol BLINDcan

One may be interested by a protocol BLINDcan, that would make sure that all supported
applicants share a canonical GHZ, but such that at the same time none of them know if
they are part of the GHZ or not. We state here that such security guarantee is impossible,
and why it is therefore meaningful to consider instead BLINDsup

can protocols.
We show now that there exists no protocol BLINDcan such that, at the end of an honest

interaction, all supported applicants share a canonical GHZ, and such that none of them
know their own support status:

Lemma 7.4.7 (Impossibility of a secure BLINDcan protocol). There exists always an
adversary A that can win the game ImpossibleGame.

Proof. For simplicity, we only sketch the proof. When it comes to proving the security
of the protocol, we realize that at least one of the supported applicants needs to be
honest, otherwise it is trivial to distinguish any correct protocol: The attacker can always
send d(0)

0 =
(
1 1 0 . . . 0

)
and d(1)

0 =
(
0 0 0 . . . 0

)
, and at the end of any (correct)

protocol run honestly, the attacker will get either a Bell pair on the first two qubits
or two qubits not entangled. It is therefore easy to distinguish, so the condition in
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ImpossibleGame

1 : (M,d(0)
0 ,d(1)

0 )← A1(1λ)
// Avoid trivial attack: check if at least one honest applicant is in the GHZ

2 : if (∀i /∈M,d(0)
0 [i] = 0) or (∀i /∈M,d(1)

0 [i] = 0) then return false fi
3 : // Run BLINDcan with adversary.c̃← A3()
4 : return c̃ = c

ImpossibleGame is indeed required. But it is not enough. Even if we assume that one
applicant is honest (say the first one), it is still impossible to prove the security of the
protocol.

Indeed, let us consider an adversary that sends:

d(0)
0 =

(
1 . . . 1

)
and d(0)

0 =
(
1 . . . 1 0 . . . 0

)
(7.12)

(the first half of the qubits is 1, the second half is 0). Then, a first remark is that at the
end of an honest protocol, all the qubits that are not entangled must be all equal, i.e. if
c = 1, the state obtained is (|0 . . . 0⟩+ |1 . . . 1⟩)⊗|0 . . . 0⟩ or (|0 . . . 0⟩+ |1 . . . 1⟩)⊗|1 . . . 1⟩.
Indeed, if some qubits in the second half are different, then a measurement in the
computational basis will reveal some different outcomes with high probability (while
when c = 0 all measurements are equal since the state is a canonical GHZ state by the
correctness property). But even in that case, it is still easy to distinguish: when we do
the measurement, in the first case, we either get 1 . . . 1 or 0 . . . 0. In the second case,
however, the first part may be different compared to the second part, i.e. we can measure
either a 0 . . . 0 or a 1 . . . 10 . . . 0 with probability 1

2 . This last measurement is enough to
distinguish, we can just ask to A to measure the state in the computational basis: if all
measurements are equal, A picks c̃ uniformly at random, otherwise A outputs c̃ = 1. A
will succeed with non negligible advantage.

Therefore it is not possible to hide to an adversary its support status, so the best
we can get is to prove that no adversary can learn the support status of the honest
applicants, which is the goal of the protocol BLINDsup

can.

7.4.2.4 The protocol BLINDsup
can

We present now the protocol BLINDsup
can (Protocol 11): at the end of the protocol, the

supported applicants share a canonical GHZ state, and each applicant knows their own
support status.
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Protocol 11 BLINDsup
can

Assumptions: There exists a δ-GHZcan capable family of functions with δ = negl(λ).
Inputs: Same as BLIND: Cupid gets d0 and λ.
Protocol:

1. Run the protocol BLIND, so that Cupid gets (b, y) and each applicant ai the ith
qubit

2. Cupid computes v ← PartInfo(tk, y), and if f−1
k (y) = {x, x′} with x ̸= x′,

compute α := ⟨b, x⊕x′⟩ (otherwise, sample α randomly). Computes the supported
set S = {i | d0[i] = 1}. Sample uniformly at random α̂ ← {0, 1}n such that
α = ⊕i∈S α̂i. For all i, send (α̂i, v[i]) to applicant ai.

3. All applicants: When receiving the message (α̂i, v[i]):
– If v[i] = ✗, then it means that the applicant is not part of the support of the

final GHZ. The end.
– If v[i] = ⊥, it is a local abort. It’s likely that the server was malicious. Do

not reveal this information to the server. The end.
– If v[i] ∈ {0, 1}, it means that this applicant is part of the final GHZ state.

Apply Z α̂iXv[i] on the qubit sent by the server.

Lemma 7.4.8 (Correctness of BLINDsup
can). If all parties are honestly running the BLINDsup

can

protocol, then at the end of the protocol, with probability 1 − δ (so with overwhelming
probability when δ is negligible), all supported applicants share a canonical GHZ, and all
applicants know whether or not they are supported.

Proof. With probability 1 − δ, the y obtained by Cupid has exactly two preimages.
In that case, due to the correctness property of PartInfo given Definition 7.4.2 (part
1) we get ∀i, v[i] ̸= ⊥, so v[i] ∈ {0, 1,✗}. Then, using Lemma 7.4.4, we know that
the state shared by all participants after the BLIND part is |h(x)⟩+ (−1)α |h(x′)⟩, with
h(x)⊕ h(x′) = d0. We can combine this using part 2 of the correctness property given in
Definition 7.4.2, (that states that v[i] ∈ {0, 1} iff d0[i] = 1): because the set of supported
participants is S := {i | d0[i] = 1}, we have for all i /∈ S : h(x)[i] = h(x′)[i]. Thus the
register of each applicant i /∈ S is in a tensor product with all the other qubits, so we
can factor them out, and consider only the state shared by applicants i ∈ S (in that case
h(x′)[i] = 1⊕ h(x)[i]):⊗

i∈S
|h(x)[i]⟩+ (−1)α

⊗
i∈S
|h(x′)[i]⟩ =

⊗
i∈S
|h(x)[i]⟩+ (−1)α

⊗
i∈S
|1⊕ h(x)[i]⟩ (7.13)

After the corrections, the state becomes:⊗
i∈S

Xv[i] |h(x)[i]⟩+ (−1)α⊕
⊕

i∈S α̂i
⊗
i∈S

Xv[i] |1⊕ h(x)[i]⟩ (7.14)
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And due to the fact that α = ⊕
i∈S α̂i, we can get rid of the phase. Moreover, we can

now use the part 3 of Definition 7.4.2 which states that there exists u ∈ {h(x), h(x′)}
such that if d0[i] = 1, then v[i] = u[i]. So if ∀i ∈ S , we have u[i] = v[i] = h(x)[i], then
after the correction we get the state |0 . . . 0⟩+ |1 . . . 1⟩, which is a canonical GHZ, and
if u[i] = v[i] = h(x′)[i] = 1− h(x)[i], then we get |1 . . . 1⟩+ |0 . . . 0⟩, which is the same
canonical GHZ state.

Similarly, we can show the security of BLINDsup
can. We prove that, if we allow in the

protocol BLINDsup
can the fully malicious server to corrupt a subset of applicants in such a way

that either at least one supported applicant is not corrupted or no supported applicant
is corrupted15, then the support status of honest applicants is completely hidden:

Lemma 7.4.9 (Security of BLINDsup
can). No QPT adversary A = (A1,A2,A3) can win the

game IND-BLINDsup
can with probability better than 1

2 + negl(λ). In the following, M is the
set of malicious applicants corrupted by Bob, and the condition ∀i ∈M,d(0)

0 [i] = d(1)
0 [i]

is required to avoid a trivial uninteresting distinguishing strategy.

IND-BLINDsup
can

A
{fk}(λ)

1 : (M,d(0)
0 ,d(1)

0 )← A1(1λ)

2 : if ∃i ∈M,d(0)
0 [i] ̸= d(1)

0 [i] then return false fi

3 : if (∃i ∈M,d(0)
0 = 1) and ((∀i /∈M,d(0)

0 [i] = 0) or (∀i /∈M,d(1)
0 [i] = 0))

4 : then return false fi
5 : c $← {0, 1}
6 : (k, tk)← Gen(1λ,d(c)

0 )
7 : (y, b)← A2(k)
8 : v ← PartInfo(tk, y)
9 : if ⊥ /∈ v then α := ⟨b, x⊕ x′⟩ else α $← {0, 1} fi

10 : α̂← {α̂ | α̂ ∈ {0, 1}n,
⊕
i∈S

α̂i = α or S = ∅}

11 : // The adversary has only access to the messages sent by Cupid to corrupted applicants:

12 : c̃← A3({(i, α̂i, v[i])}i∈M)
13 : return c̃ = c

15Otherwise there is a trivial, fundamental, attack to any protocol which consists in setting d(0)
0 = (01),

d(1)
0 = (11), M = {2} and then testing if the quantum state obtained by the party 2 is a |+⟩ or not.

However, this attack is not possible anymore if the adversary is not in possession of one part of the GHZ
(for example if we replace d(0)

0 = (00) and d(1)
0 = (10) in the above example), that is the reason why we

can provide a stronger security guarantee when no supported applicant is supported.
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Proof. The first step in the proof is to note that, due to the condition line 3, we have
either:

• ∀i ∈M, d(0)
0 = 0, i.e. M ∩ S = ∅. But since we send α̂i to the adversary only if

i ∈M, and since the line 10 does not put any restriction on the sampling α̂i when
i /∈ S , the line 9 and 10 can be replaced with a single line α̂← {0, 1}n.

• or there exists j /∈ M such that d(c)
0 [j] = 1, i.e. such that j ∈ S . Therefore,

α̂ can be sampled by choosing for all i ̸= j, α̂i randomly, and finally by setting
α̂j = α⊕⊕i∈S\{j} α̂j (this is statistically indistinguishable). But since α̂j is never
sent to A because j /∈M, we can also remove lines 9 and 10 and replace them
with α̂← {0, 1}n.

This gives us a new game Game1.

Game1A

1 : // . . . First 7 lines like IND-BLINDsup
can

2 : α̂← {0, 1}n

3 : c̃← A3({(i, α̂i, v[i])}i∈M)
4 : return c̃ = c

Since the two games are exactly equivalent, we have Pr
[

IND-BLINDsup
can

A ] = Pr
[

Game1A ].
Then, define a new game Game2 by removing the condition line 3 and 4.

Game2A

1 : // . . . Remove line 3 and 4 of Game1

2 : if (∃i ∈M,d(0)
0 = 1) and ((∀i /∈M,d(0)

0 [i] = 0) or (∀i /∈M,d(1)
0 [i] = 0))

3 : then return false fi
4 : // . . . Rest is like Game1

We can remark that this condition cannot help the adversary to win since entering
inside this condition always returns “false”, therefore Pr

[
Game1A ] ≤ Pr

[
Game2A ]. But

now, we remark that Game2 is very similar to the game defined Definition 7.4.2, except
that we provide an additional random string α̂ to A. But since this string is random, it
is easy to see that we can turn any adversary A winning Game2 with probability p into an
adversary A′ winning the game with the same probability p by defining A′({(i, v[i])}i∈M)
as an adversary sampling a uniformly random bit string α̂ and calling A({(i, α̂i, v[i])}i∈M)
(and reciprocally, any adversary that can win without access to α̂ can win Game2 with
access to α̂ by simply forgetting this value). So we get:

max
QPT A

Pr
[

Game2A ] = max
QPT A

Pr
[ A ] (7.15)
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But by assumption, for any QPT A, Pr
[ A ] ≤ 1

2 + negl(λ). So by combining all the
inequations we showed on games, we also get:

Pr
[

IND-BLINDsup
can

A
{fk}(λ)

]
≤ 1

2 + negl(λ) (7.16)

which ends the proof.

7.4.2.5 The protocol AUTH-BLINDdist
can

We can now define our main protocol AUTH-BLINDdist
can . Similarly to the BLINDsup

can protocol,
each supported applicant is supposed to end up with a canonical GHZ state, and the
support status of each applicant should be unknown to the other applicants and to the
server. However, in this protocol the trusted party Cupid is not needed anymore: each
applicant is supposed to choose themselves their own support status, and they will be
assured that no malicious party (including the server) can learn it.

Moreover, the server can have some guarantees on the support status of the applicants:
for example, the server can ensure that if some applicants are supported, then they
all know a classical secret (but the server has no way to know whether or not a given
applicant is supported). This secret can be any witness of a NP relation: it could be a
password, a private key linked with some known public key, a signature from a third party
Certification Authority, the proof of any famous theorem. . . We formalize it by defining n
deterministic functions Authi : {0, 1}×{0, 1}∗ → {0, 1} responsible of the “authorization”
of the applicants: the server will allow applicant i to be part of the protocol iff they can
prove in a NIZK way that they know w such that Authi(d0[i], w) = 1. For instance, we
can use the Authi function to ensure that an applicant is part of the GHZ iff they know
a password whose hash by h is x by defining Authi(d0[i], s̃i)) := (d0[i] = 0 ∨ h(s̃i) = x).
Again, we emphasize that Authi does not reveal the value of d0[i]: it just reveals that if
the user is supported, then they know the password. This verification only requires a
single message from the client(s) and is therefore achieving NIZKoQS, as formalized in
Section 7.3.

We will now prove the correctness and security of the AUTH-BLINDdist
can protocol. Note

that an honest server can obtain guarantees on the distributed state even in the presence
of malicious or noisy applicants. Assuming here an honest server is not absurd, notably
when the server wants to use this GHZ, for example to share a quantum state or if a
verification is done afterwards. This centralization is also useful in the presence of many
noisy clients (a single hardware needs to be noiseless, while in a decentralized MPC
computation the protocol is likely to always abort if a single client is noisy).
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Protocol 12 AUTH-BLINDdist
can

Inputs: Each applicant i gets λ. They also get d0[i] ∈ {0, 1} and wi ∈ {0, 1}∗
such that Authi(d0[i], wi) = 1 (d0[i] = 1 iff applicant i wants to be supported). The
authentication functions {Authi}i∈[n] are also public.
Assumptions: There exists a δ-GHZcan capable distributable family of functions with
δ = negl(λ). Cupid is not required anymore, and instead we require the existence of a
classical (but quantum-secure) Multi-Party Computation protocol.
Protocol:

1. Each applicant ai: Run (k(i), t
(i)
k )← GenLoc(1λ,d0[i]), send k(i) to the server, and

continue the protocol.
2. Server: Run (as a verifier) a Zero-Knowledge protocol with each applicant

(the prover) to check that k(i) is well prepared, and that the applicant can
authenticate the quantum state. More precisely, each applicant i proves to the
server that they know (d0[i], t(i)k , w(i)) such that CheckTrapdoorλ(d0[i], t(i)k , k(i))∧
Authi(d0[i], w(i)) = 1. If the protocol fails with at least one applicant, abort after
sending ⊥ to all applicants (the server can also output if needed the identity of
the applicant who were malicious in case other actions should be performed with
respect to them, e.g. in further runs). Otherwise, the protocol continues.

3. Server: Compute k := (k(1), . . . , k(n)), run the quantum circuit already described
in protocol BLIND, and for all i, send the ith qubit of the second register to
applicant ai together with (y, b).

4. For each applicant i: Compute v[i] ← PartInfoLoc(t(i)k , y), and compute via a
MPC protocol the function CombineAlpha which returns a secret share of α
between supported applicants. More precisely, it returns to each applicant i a
random bit α̂i such that ⊕i∈S α̂i = α = ⊕

i PartAlphaLoc(i, t
(i)
k , y, b), where S is

the set of supported applicants (details in Figure 7.2). The reason we use a MPC
protocol is that PartAlphaLoc(i, t(i)k , y, b) can leaka information about the bit d0[i],
so this bit should not be revealed directly.

5. For each applicant i: If the outcome α̂i of the MPC is ⊥, abort. Otherwise,
similarly to the last step of the BLINDsup

canprotocol: if v[i] ∈ {0, 1}, apply the
correction Xv[i]Z(α̂i) on the qubit, else discard the qubit.

aThe attack would be as follows: the malicious server Bob can run the GHZ-QFactory protocol with
k(i) which gives him a BB84 state in the basis d0[i]: if d0[i] = 0 then it gets either |0⟩ or |1⟩, but if
d0[i] = 1 then it gets the state |+⟩ if α(i)

p αi = 0 and a |−⟩ otherwise. So the trick is to measure the
state in the Hadamard basis: if the measurement is different from α(i)

p then we know that d0[i] = 0,
and otherwise the server will randomly guess the value of d0[i]. It is easy to see that if d0[i] is chosen
uniformly at random, then the server has a non-negligible advantage in guessing d0[i].
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Algorithm 4 CombineAlpha((k, y, b), (t(1)
k ,d0[1], k(1), y(1), b(1)), . . . , (t(n)

k ,d0[n], k(1), y(n), b(n)))
1 : // Check if the input are honestly prepared

2 : if k ̸= (k(1), . . . , k(n)) or
3 : ∃i, y(i) ̸= y or b(i) ̸= b or ¬CheckTrapdoorλ(d0[i], t(i)k , k

(i))
4 : then return ⊥n+1 fi
5 : // Compute the correction α, the set of supported applicants, sample a first version of α̂

6 : α =
⊕
i

PartAlphaLoc(i, t(i)k , y, b); S = {i | d0[i] = 1}; ∀i, α̂i =
⊕
l

r(l)[i]

7 : if S ̸= ∅ then // If at least one person is supported, ensure ⊕i∈S α̂i = α

8 : j = max
i∈S

i// Pick an arbitrary j ∈ S to change

9 : α̂j = α⊕
⊕

i∈S\{j}
α̂i

10 : fi // Return α̂i to applicant i and ⊤ to the server to indicate no problem occurred.

11 : return (⊤, α̂1, . . . , α̂n)

Figure 7.2: The function to compute in the AUTH-BLINDdist
can protocol using MPC. The

first input is the input of the server, and the other inputs are from the applicants (the
y(i) and b(i) are supposed to be equal to y and b and are just used to ensure that the
server provided coherent inputs in the MPC, and r(i) ∈ {0, 1}n is a string supposed to be
sampled uniformly at random).

Informally, in the presence of malicious applicants, an honest server is guaranteed
that with overwhelming probability the protocol will either abort, or only the applicants i
knowing w(i) such that Authi(1, w(i)) = 1 will share a GHZ state, up to some unavoidable
local deviation performed by supported malicious applicants on their own parts of the
GHZ:

Lemma 7.4.10 (Correctness of AUTH-BLINDdist
can in the presence of malicious applicants).

Formally, if the server is honest, and if we allow an attacker to corrupt an arbitrary
subset M of applicants, then with overwhelming probabilities, the protocol either aborts,
or the k received by the server belongs to K, and for each applicant i, there exists wi
such that Authi(d0[i], wi) = 1. If the ZK protocol is also a Proof of Knowledge protocol,
then the applicant “knows” wi, in the sense that if the adversary can pass the test with
non-negligible probability, there exists an extractor that can extract wi given the applicant’s
circuit with non-negligible probability (this is a direct application of Definition 7.2.3)16.

16In particular, if it is impossible to forge with non-negligible probability a wi such that
Authi(d0[i], wi) = 1 (for instance because this wi is a signature coming from an unforgeable signa-
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Moreover, if the protocol did not abort before, at the end of the protocol, with probability
1− δ − negl(λ) (i.e. overwhelming if δ is negligible), the protocol will either abort, or a
state will be obtained by applicants. In this later case, if we denote by ρA,M the joint state
of the honest applicants (register A) and of the adversary (register M) obtained at the
end of the protocol, then ρA,M can be written as a Completely Positive Trace Preserving
(CPTP) map17 applied on a GHZ state shared among all parties i such that d0[i] = 1, in
such a way that the CPTP map leaves untouched the qubits of the GHZ state owned by
honest applicants i. In particular, if all supported parties are honest, they all share a
GHZ state.

Proof. The first action of the server (which is assumed to be honest here) is to run a ZK
protocol to check that ∀i, k(i) ∈ Kλ,Loc and Authi(d0[i], wi) = 1. Therefore, we can use
the soundness property of the ZK protocol to claim that with overwhelming probability
∀i, k(i) ∈ Kλ,Loc and there exist wi such that Authi(d0[i], wi) = 1 (since the provers are
the applicants, they are bounded so we can rely on both computational or statistical
soundness). The fact that wi is actually “known” to the applicant comes directly from
the fact that the ZK protocol is a Proof of Knowledge and is extractable. So with
overwhelming probability, k := (k(1), . . . , k(n)) belongs to K := Kn

λ,Loc. Therefore, since
the server is honest, with probability 1− δ it will measure a y such that |f−1

k (y)| = 2,
and due to the properties of the family fk, the two preimages x and x′ are such that
h(x) ⊕ h(x′) = d0. So the state sent by the server is |h(x)⟩ + (−1)a |h(x′)⟩ with
a = ⟨b, x ⊕ x′⟩. Then, the MPC protocol will be performed. If the MPC aborts, then
we are already in the setting of the theorem. If the MPC does not aborts, then, due to
the fact that in quantum mechanics, operations performed by two non-communicating
parties commute, without any loss of generality we can assume that the honest applicants
will apply the correction before the deviation of the malicious party. Moreover, since the
honest corrections are unitary, we can also assume without any loss of generality that the
first step of the malicious party is to apply the honest correction on the state received
from the server and then deviate (eventually by starting to undo the correction). Note
that we do not even ask this correction to be efficiently computable by the adversary
(see Footnote 17) since we just claim that such deviation exists. Due to the definition of

ture scheme), then it means that with overwhelming probability the applicant is indeed in possession of
wi.

17Note that for simplicity, we just require the existence of this CPTP map, and therefore it can depend
on any quantity, including k, d0. . . Therefore we do not require this map to be efficiently computable
since it will not be useful for us. However, a similar “efficient” version should be derivable if we make
sure our ZK protocol is extractable, i.e. that the trapdoor of each k(i) can be extracted by a simulator.
This is however out of the scope of this thesis.
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PartInfo, after applying the X correction, the parties i for which d0[i] = 1 share a state
|0 . . . 0⟩+ (−1)α |1 . . . 1⟩. Now, we have two cases:

1. If there exists at least one supported applicant which is malicious, then the proof
is done: no matter what are the values of α̂i which will be used by the honest
applicant to correct the state, we can always include in the CPTP map a first step
that applies Zα⊕

⊕
i∈S,i/∈M α̂i on the qubit of the malicious applicant to map the step

back to a GHZ state. Again, this is possible since we just require the existence of
the CPTP map. Then, any CPTP deviation can be applied on the state owned by
the malicious adversary, including undoing the previous Z and X corrections.

2. If there exists no malicious supported applicant, and if the probability of having
no abort and no malicious supported applicant is non-negligible18, then with
overwhelming probability we must have ⊕i∈S α̂i = α. Indeed, if it is not the
case, then it is possible to distinguish the real world from the ideal world of the
MPC computation. Therefore, after the Z correction the honest applicants having
d0[i] = 1 will share a canonical GHZ, which ends the proof.

Lemma 7.4.11 (Blindness of AUTH-BLINDdist
can in the presence of malicious applicants). If

the server corrupts a set of applicants, in such a way that at least one supported applicant
is not corrupted, or that no supported applicant is corrupted, then the support status
of the honest applicants is hidden in the AUTH-BLINDdist

can protocol, beyond the fact that
server knows whether or not they can pass the authorization step. More formally, no
adversary can win the game IND-AUTH-BLINDdist

can .

Proof. The above game is more formally defined in Game1.
We will prove the above theorem by using a hybrid argument. First, we can easily

see that if the adversary corrupts all applicants (M = [n]), then it cannot win the game
with probability better than 1

2 . Indeed, the line 2 forces d(0)
0 = d(1)

0 (and both maps wi
are empty), therefore the view of the adversary is exactly the same for c = 0 and c = 1.
So we can define a new hybrid game Game2 in which we return false if M = [n]:

Then, we can turn any adversary A winning Game1 with probability p into another
adversary A′ winning Game2 with probability p. To do so, A′ runs first A1: if A1 returns
M ≠ [n], then A′ continues normally with A, otherwise if M = [n] then A′ removes

18If on the other hand this quantity is negligible, then this second case occurs with negligible
probability so it is absorbed in the negl(λ) of the theorem.
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IND-AUTH-BLINDdist
can

A
{fk}(λ)

1 : (M,d(0)
0 , {(i, w(0)

i )}i∈[n]\M),d(1)
0 , {(i, w(1)

i )}i∈[n]\M)← A1(1λ)

2 : if ∃i ∈M,d(0)
0 [i] ̸= d(1)

0 [i] then return false fi

3 : if (∃i ∈M,d(0)
0 = 1) and ((∀i /∈M,d(0)

0 [i] = 0) or (∀i /∈M,d(1)
0 [i] = 0))

4 : then return false fi
// Check that the adversary did not gave wrong witnesses wi:

5 : if ∃i ∈ [n],∃c ∈ {0, 1},Authi(d
(c)
0 [i], w(c)

i ) ̸= 1 then return false fi

6 : c $← {0, 1}; d0 := d(c)
0 ;wi := w

(c)
i

7 : Run with A2 the protocol AUTH-BLINDdist
can .

8 : c̃← A3

9 : return c̃ = c

Game1A(λ)

1 : (M,d(0)
0 , {(i, w(0)

i )}i∈[n]\M),d(1)
0 , {(i, w(1)

i )}i∈[n]\M)← A1(1λ)

2 : if ∃i ∈M,d(0)
0 [i] ̸= d(1)

0 [i] then return false fi

3 : if (∃i ∈M,d(0)
0 = 1) and ((∀i /∈M,d(0)

0 [i] = 0) or (∀i /∈M,d(1)
0 [i] = 0))

4 : then return false fi
// Check that the adversary did not gave wrong witnesses wi:

5 : if ∃i ∈ [n],∃c ∈ {0, 1},Authi(d
(c)
0 [i], w(c)

i ) ̸= 1 then return false fi

6 : c $← {0, 1}; d0 := d(c)
0 ;wi := w

(c)
i

7 : ∀i /∈M, (k(i), t
(i)
k )← GenLoc(1λ,d0[i])

8 : A2({k(i)}i/∈M)
9 : for i /∈M do

10 : Prove in ZK with A2,i that CheckTrapdoorλ(d0[i], t(i)k , k
(i)) ∧ Authi(d0[i], wi) = 1

11 : endfor
12 : if A2 aborts then wait for c̃ from A2. return c̃ = c fi
13 : (y, b)← A3

14 : Compute in a MPC way the CombineAlpha function, where A4 controls adversaries in M.
// All others operations are not sent to the adversary, and operations

// applied on the quantum state do not change anything due to non-signaling.

15 : c̃← A5

16 : return c̃ = c
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Game2A(λ)

// Just update the line 2 of Game1 as follows:

2 : if M = [n] or ∃i ∈M,d(0)
0 [i] ̸= d(1)

0 [i] then return false fi
// Rest is like Game1. . .

one element of M (of course, [n] is assumed to be non empty. . . ), and A′ aborts when
A2 is supposed to run, and output a random c̃. Therefore, we have:

max
QPTA

Pr
[

Game1A ] (λ) = max
QPTA′

Pr
[

Game2A′
]

(λ) (7.17)

The second hybrid game that we define is the same as the game Game2, except that
we replace lines 14 to 15 with one line (c̃, y⃗)← REALΠ,A′(λ, x⃗, ρ3), where ρ3 is the final
internal state of the adversary A3, x⃗ contains the honest inputs of the MPC computation
for the non-corrupted adversaries and dummy inputs for the corrupted adversaries (we
will ignore them anyway), and A′ is the adversary that outputs the corrupted set M,
that runs A4(ρ3) followed by c̃← A5(ρ4), where ρ4 is the final internal state of A4, and
that finally returns c̃. This defines a new game Game3:

Game3A

14 : Compute in a MPC way the CombineAlpha function, where A4 controls adversaries in M.
15 : c̃← A5 (c̃, y⃗)← REAL

Π,A′(λ, x⃗, ρ3)

Since this is perfectly equivalent from the point of view of the adversary (due to the
definition or REAL), the probability of winning these two games are exactly the same:
Pr
[

Game2A ] = Pr
[

Game3A ]. Now, because the MPC protocol is secure, there exists a
simulator Sim fitting Definition 7.2.6. Therefore, we can now define a new game Game4,
in which we replace the real world with the ideal world:

Game4A

15 : (c̃, y⃗)← REAL
Π,A′(λ, x⃗, ρ3) (c̃, y⃗)← IDEALCombineAlpha,Sim(λ, x⃗, ρ3)

Then, we have

Pr
[

REALΠ,A′(λ, x⃗, ρ3)[0] = c
]
≤ Pr

[
IDEALCombineAlpha,Sim(λ, x⃗, ρ3)[0] = c

]
+ negl(λ)

(7.18)

(otherwise we could distinguish between the real and ideal worlds), and therefore
Pr
[

Game3A ] ≤ Pr
[

Game4A ] + negl(λ). Now, we can define CombineRandom, which
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is an adaptation of CombineAlpha that does not depend anymore on the secret values of
the honest parties: We can now define a new game Game5 in which we substitute the

Algorithm 5 CombineRandom((k, y, b), (t(1)
k ,d0[1], r(1), k(1), y(1), b(1)), . . .

. . . , (t(n)
k ,d0[n], r(n), k(1), y(n), b(n)))

1 : // Check if the input are honestly prepared

2 : if k ̸= (k(1), . . . , k(n)) or ∃i, y(i) ̸= y

3 : or b(i) ̸= b or ∃i ∈M,¬CheckTrapdoorλ(d0[i], t(i)k , k
(i)) then

4 : return ⊥n+1 fi

5 : ∀i, α̂i =
⊕
l

r(l)[i]

6 : return (⊤, α̂1, . . . , α̂n)

CombineAlpha function with the CombineRandom function:

Game5A

1 : (c̃, y⃗)← IDEALCombineAlphaCombineRandom,Sim(λ, x⃗, ρ3)

Then, we have Pr
[

Game4A ] = Pr
[

Game5A ]. Indeed, by construction, the inputs of
the honest parties always pass the CheckTrapdoor test, so removing this test for the
honest parties cannot help the adversary to distinguish the two games. Moreover, since
at least one applicant is honest, the string ⊕l r

(l) is indistinguishable from a random
string. Therefore, we can use the same trick used already in the proof of Lemma 7.4.9:
the condition line 3 gives us two cases.

• If all malicious applicants are not supported, then, since the output of honest
applicants are never given back the adversary, we do not need to update α̂j

• Similarly, if at least one honest applicant is supported, then instead of updating α̂j ,
we can update the α̂j or this applicant. . . But since the output of honest applicants
are never given to the adversary, we do not even need to update it.

Therefore, Pr
[

Game4A ] = Pr
[

Game5A ]. In the next hybrid, we are going to remove
completely the MPC computation, and the previous line that can now be merged in a
single one:

Game6A

12 : if A2 aborts then wait for c̃ from A2. return c̃ = c fi
13 : (y, b)← A3

12 : (c̃, y⃗)← IDEALCombineRandom,Sim(λ, x⃗, ρ3) c̃← A3
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The reason is that now, since the CombineRandom function does not depend on any
secret own by honest parties, the input of honest parties can be replaced with wrong
trapdoors t(i)k and d0[i]. Therefore, since the adversary knows already k(i), it can simulate
locally the ideal world. More precisely, from an adversary A winning the game Game5A

with probability p, we can create another adversary A′ winning the game Game6A with
the same probability p: A′ will run A1 and A2 against the challenger, keeping locally the
k(i). If A2 aborts and sends c̃, then it returns c̃ directly. Otherwise A′ runs as a blackbox
A3 to obtain (y, b), and then it locally runs Sim to compute IDEALCombineRandom,Sim(λ, x⃗, ρ3),
by feeding the input of honest parties input x⃗ with the k(i) that it got before, y(i) := y,
b(i) := b, r(i) $← {0, 1}n and since the values of t(i)k do not matter anymore, it can put any
value here. Finally A′ outputs the c̃ obtained from the simulation IDEAL. Therefore,
since we do not change what is done, but who’s doing what, we get:

max
QPTA

Pr
[

Game5A ] (λ) = max
QPTA′

Pr
[

Game6A′
]

(λ) (7.19)

So now, the game Game6 is exactly like Game1 except that the lines 12–15 are replaced with
a single line c̃← A3. We will now do a similar strategy to remove the ZK protocol (line 9).
The first step is to formalize this line (we will also merge it with the next line). We
define RL as the relation (d0[i], t(i)k , k(i)) ∈ RL(k(i)) iff CheckTrapdoorλ(d0[i], t(i)k , k(i)) ∧
Authi(d0[i], wi) = 1, and P the honest ZK prover associated with RL. If we define ρ1 as
the internal state at the end of A1, and V∗({k(i)}i/∈M, ρ1) := (ρ2 ← A2(ρ1); c̃← A3(ρ2))
then we can merge the line 12 of Game6 with the line 9 as follows:

Game7A

8 : ρ←A2({k(i)}i/∈M)// We just explicit the internal state after A2

9 : for i /∈M do
10 : Prove in ZK with A2,i that CheckTrapdoorλ(d0[i], t(i)k , k

(i)) ∧ Authi(d0[i], wi) = 1

ρ← OUTA2,i
⟨P(d0[i], t(i)k , wi),A2,i(ρ)⟩(k(i))

11 : endfor

Since both games are exactly identical (up to the notation), we get Pr
[

Game6A ] =
Pr
[

Game7A ]. Now, due to the fact that the MPC protocol respects the property Quantum
Zero Knowledge defined in Definition 7.2.2, there exist for all i /∈M a simulator Simi

fitting Definition 7.2.2. To be completely formal, one should define a series of games in
which we replace in the loop only one OUT at a time by the simulated version, and we
can then claim that the probability of having c̃ = c in each hybrid game is negligibly
close to the probability of having c̃ = c in the first game, otherwise we could distinguish
between the real world and the ideal world. This gives us at the end a new game Game8:
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Game8A

10 : ρ← OUTA2,i
⟨P(d0[i], t(i)k , wi),A2,i(ρ)⟩(k(i)) ρ← Simi(k(i),V∗, ρ)

And using the above argument, Pr
[

Game7A ] ≤ Pr
[

Game8A ] + negl(λ). Now, the
simulators Simi can be fully simulated by the adversary since there is no more secret
information. So, exactly like we did for the MPC computation, we can move the loop
into the adversary:

Game9A

8 : ρ← A2({k(i)}i/∈M) c̃← A2({k(i)}i/∈M)
9 : for i /∈M do

10 : ρ← Sim(k(i),V∗, ρ)
11 : endfor
12 : c̃← A3

and we get:

max
QPTA

Pr
[

Game8A ] (λ) = max
QPTA′

Pr
[

Game9A′
]

(λ) (7.20)

So now, Game9 is like Game1 except that all lines starting from line 8 are replaced with a
single line c̃← A2({k(i)}i/∈M). We see now that the conditions line 5 and line 3 can only
decrease the probability of winning the game. Therefore we can remove them (as well as
wi’s which are not used anymore). This gives us this new game (after removing empty
lines):

Game10A(λ)

1 : (M,d(0)
0 ,d(1)

0 )← A1(1λ)

2 : if ∃i ∈M,d(0)
0 [i] ̸= d(1)

0 [i] then return false fi

3 : c $← {0, 1}; d0 := d(c)
0

4 : ∀i /∈M, (k(i), t
(i)
k )← GenLoc(1λ,d0[i])

5 : c̃← A2({k(i)}i/∈M)
6 : return c̃ = c

Since we only increase the probability of success, we have:

max
QPTA

Pr
[

Game9A ] (λ) ≤ max
QPTA′

Pr
[

Game10A′
]

(λ) (7.21)
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Game11A

4 : ∀i /∈M∀i ∈ [n], (k(i), t
(i)
k )← GenLoc(1λ,d0[i])

5 : c̃← A2({k(i)}i/∈M∈[n])

Similarly, we can decide to give more advices to the adversary, by running GenLoc on all
i ∈ [n] instead of only on the i /∈M:

Since we give more advices to the adversary, its probability of winning the game can
only increase (it can always decide to drop this additional information). Therefore

max
QPTA

Pr
[

Game10A ] (λ) ≤ max
QPTA′

Pr
[

Game11A′
]

(λ) (7.22)

However, since Gen is defined as the concatenation of GenLoc, then this game is actually
exactly the IND-D0A

Gen(λ) game defined Section 4.2, and by assumption, the probability
of winning this game is smaller than 1

2 + negl(λ). Therefore, we also have:

max
QPTA

Pr
[

Game1A ] (λ) ≤ 1
2 + negl(λ) (7.23)

which ends the proof.

7.4.3 Generic construction to create distributable δ′-GHZcan

capable primitives from δ-GHZH capable primitives

We prove in this section that we can create a distributable δ′-GHZcan capable family of
functions from a δ-GHZH capable family having a small additional assumption (which
our construction in Chapter 5 has).

Theorem 7.4.12. Let δ ∈ [0, 1], and {fk}k∈K be a δ-GHZH capable family19 of functions,
such that fk(x) can be written as fk((c, x̄)) with c ∈ {0, 1} a bit labelling the preimage20,
i.e. such that when a given y has exactly two preimages, one preimage has the form
(0, x̄) and the other (1, x̄′). Then there exists a family {f ′k}k∈K′ which is a distributable
δ′-GHZcan capable family with δ′ = 1 − (1 − δ)n ≤ δn. In particular, if δ is negligible
(and n polynomial) then δ′ is negligible. Moreover, if the family {fk} admits a circuit
H.CheckTrapdoorλ(d0, tk, k) that returns 1 iff tk is the trapdoor of k, k ∈ K and
d0 = d0(tk), then there exists a function CheckTrapdoor for {f ′k} having the properties
from Definition 7.4.3.

19In fact we only require this function to work when d0 is a single bit.
20This is quite similar to the concept of claw-free functions used in [Mah18a].
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The family {f ′k}k∈K′ can be obtained by generating n independent functions in {fk}
(one for each d0[i]). More precisely, we define in Figure 7.3 the precise construction
(where H.Gen, H.Enc, H.Invert and H.Eval are coming from the family {fk}).

GenLoc(1λ,d0[i])

1 : (k(i), t
(i)
k )← H.Gen(1λ,d0[i])

2 : return (k(i), t
(i)
k )

EvalP((k(1), . . . , k(n)), (c, x̄(1), . . . , x̄(n)))

1 : return (H.Eval(k(1), (c, x̄(1))),
2 : . . . , H.Eval(k(n), (c, x̄(n))))

PartInfoLoc(t(i)k , y)

1 : if d0(t(i)k ) = 0 then return ✗ fi

2 : {(0, x̄), (1, x̄′)} ← H.Invert(t(i),yk )
3 : if x̄ = ⊥ or x̄′ = ⊥ then return ⊥
4 : return H.h((0, x̄))

h((x(1), . . . , x(n)))

1 : return h(x1)| . . . |h(xn)

PartAlphaLoc(i, t
(i)
k , y, b)

1 : (y(1), . . . , y(n)) := y

2 : (bc, b(1),...,b(n)
) := b

3 : {(0, x̄), (1, x̄′)} ← H.Invert(t(i),yk )
4 : if x̄ = ⊥ or x̄′ = ⊥ then return ⊥ fi

5 : if i = 1 then return bc ⊕ ⟨b(i), x̄⊕ x̄′⟩
6 : else return ⟨b(i), x̄⊕ x̄′⟩ fi

CheckTrapdoorλ(d0[i], t(i)k , k(i))

1 : return H.CheckTrapdoorλ(d0[i], t(i)k , k
(i))

Figure 7.3: Construction of a distributable δ′-GHZcan capable family.

Proof. Most of the properties are simple to check. We just precise the δ′-2-to-1 proof
and blindness. First, we show that the function f ′k are δ′-2-to-1 with δ = 1− (1− δ)n.
Let #2(f) be the number of images having exactly 2 preimages by f (we will call this
kind of preimages “twin”), and |K| the number of elements in K. Then by definition,
for all k, 1 − δ ≤ #2(fk)/|X |. Let k′ = (k(1), . . . , k(n)) ∈ Kn = K′, we want to show
that 1 − δ′ := (1 − δ)n ≤ #2(f ′k′)/(|X ′|). First, we compute #2(fk′). Because of the
assumption of the shape (0, x̄) and (1, x̄′) of all the couples of preimages, we can define
for any k(i) the sets

A
(i)
0 := {x̄ | f−1

k
(i)(fk(i)(x)) = {(0, x̄), (1, x̄′)}} (7.24)

and

A
(i)
1 := {x̄′ | f−1

k
(i)(fk(i)(x)) = {(0, x̄), (1, x̄′)}} (7.25)

Moreover, due to this same condition, we have |A(i)
0 | = |A(i)

1 | = 1
2#2(fk(i)). Now, we

compute a lower bound on the number of twin preimages of fk′ . Let (x̄(1), . . . , x̄(n)) ∈
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A
(1)
0 ×· · ·×A(n)

0 : then for all i there exists a unique x̄(1)′ ∈ A(i)
1 such that f

k
(i)((0, x̄(i))) =

f
k

(i)((1, x̄(i)). So

fk′(0, x̄(1), . . . , x̄(n)) = f
k

(1)(0, x̄(1))| . . . |f
k

(n)(0, x̄(n)) (7.26)
= f

k
(1)(1, x̄(1)′)| . . . |f

k
(n)(1, x̄(n)′) (7.27)

= fk′(1, x̄(1)′, . . . , x̄(n)′) (7.28)

So we found at least one different preimage, and due to the uniqueness of the above
x̄(1)′ it is the only second preimage. Therefore:

#2(fk′)
|X ′| = 2× |A(1)

0 | × · · · × |A(n)
0 |

2
( |X |

2

)n (7.29)

=
#2(fk(1))× · · · ×#2(fk(n))

(|X |)n (7.30)

≥ (1− δ)n (7.31)

Which concludes the proof.
To prove the inequality, we use the Bernoulli’s inequality: since δ ∈ [0, 1] and n is a

non-negative integer, we get: (1− δ)n ≥ 1− δn, so

δ′ = 1− (1− δ)n ≤ 1− (1− δn) = δn (7.32)

Since the keys of {f ′k} are keys of {f ′k} (except that d0 is a single bit), the properties
of CheckTrapdoor come directly from the properties of H.CheckTrapdoor. All the other
correctness properties are true by construction.

The security is quite intuitive: since all trapdoors are independently sampled, if one
can learn information about the d0 sampled by another party, then it can break the
IND-D0A

Gen(λ) game of fk. More formally, because of the properties on GenLoc, the game
A
Gen,PartInfo(λ) can equivalently be rewritten as follows:

Then, we can define the following game in which the sampling of malicious t(i)k , the
computing of PartInfoLoc and the initial condition are removed:

Then, because A2 in Game2 can do itself the sampling and computing done in Game1,
and because the removing the condition line 2 can only increase the probability of winning
the game, we have:

max
QPTA

Pr
[

Game1A ] (λ) ≤ max
QPTA′

Pr
[

Game2A′
]

(λ) (7.33)

Then, we define a series a hybrid games in which we gradually replace the H.Gen(1λ, d(c)
0 [i])’s

with H.Gen(1λ, 0), which Z starting from ∅ until Z = M.
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Game1

1 : (M,d(0)
0 ,d(1)

0 )← A1(1λ)

2 : if ∃i ∈M,d(0)
0 [i] ̸= d(1)

0 [i] : return false fi
3 : c $← {0, 1}
4 : ∀i, (k(i), t

(i)
k )← H.Gen(1λ,d(c)

0 [i])
5 : y ← A2(k(1), . . . , k(n))

6 : ∀i, v[i]← PartInfoLoc(i, t(i)k , y)
7 : c̃← A3({(i, v[i])}i∈M)
8 : return c̃ = c

Game2

1 : (M,d(0)
0 ,d(1)

0 )← A1(1λ)
2 : c $← {0, 1}
3 : ∀i ∈M, (k(i), t

(i)
k )← H.Gen(1λ,d(c)

0 [i])
4 : c̃← A2({k(i)}i∈M)
5 : return c̃ = c

Game3Z

1 : ∀i ∈M, (k(i), t
(i)
k )← H.Gen(1λ,d(c)

0 [i])

∀i ∈M, if i ∈ Z then x := 0 else x := d(c)
0 [i] fi ; (k(i), t

(i)
k )← H.Gen(1λ, x)

This is possible because the game IND-D0 of H.Gen can be seen as a IND-CPA secure
encryption (where Gen is the concatenation of the key generation and encryption of d0),
itself equivalent to semantic security: i.e. the ciphertext does not give any advice on the
clear text. Therefore we can replace the clear text with 0 for example, which gives for all
j:

max
QPTA

Pr
[

Game3A
Z
]

(λ) ≤ max
QPTA′

Pr
[

Game3A′

Z∪{j}

]
(λ) (7.34)

At the end of the hybrid series, when Z = M, we get a final game where no information
about c are given to the adversary: it is therefore impossible to win this game Game3M
with probability better than 1

2 . Therefore we get:

max
QPTA

Pr
[ A

Gen,PartInfo

]
(λ) ≤ 1

2 + negl(λ) (7.35)
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Which ends the proof.
Finally, the security of the game implies the security of IND-D0 since when M = ∅,

both games are equivalent.

7.5 Discussions and Open Questions

In this chapter, we saw that classical-client RSP protocols can have surprising connections
with Zero-Knowledge: they allow us to perform Non-Destructive and Non-Interactive
Zero-Knowledge proofs on Quantum States (NIKZoQS), which seems to be impossible to
do with more standard quantum protocols. Moreover, we can extend our GHZ-QFactory
protocol to a multi-party setting by distributing a GHZ state among multiple parties:
revealing information about the shared state does not significantly decrease the security.
We can also force the applicants to prove that if they share a part of the GHZ state, then
they know secrets. This is done without revealing to anybody whether they are part of
the GHZ state of not.

This may have multiple applications, as already discussed in Section 7.1.3. One
could notably study the obtainable guarantees, on a per-protocol basis, notably if the
source can collaborate with some applicants (as already discussed, if the source cannot
collaborate with the applicants the security proof should be direct). One could also
formalize our sketched protocol and proof concerning quantum “onion routing” and
anonymous quantum secret sharing (for instance in this later protocol, one must make
sure that the output of the measurement done during the share does not leak to people
outside of the GHZ state: therefore, an additional MPC step may be required, or in the
presence of a single party sharing the quantum state, one may prefer to use its public
key to encrypt the value of the measurement).

It would also be interesting to see if NIZKoQS and quantum languages could also
have other more fundamental implications, potentially linked with complexity theory.
Notably, being able to characterize completely the set of quantum languages for which
there exist NIZKoQS proofs could be of great interest: using [Mah18a] we can certainly
prove that a given state is of the form XaZb |ϕ⟩ for any ϕ obtainable using an efficient
quantum circuit (to which we can also add ZK proofs on the quantum circuit itself), but
so far we do not know if it is possible or not to prove statement on the one-time padded
state directly. Note that since the entanglement between the qubits is independent of the
one-time pad, it means that we should be able to prove any property on the entanglement
of any given state.
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Conclusion

“Is there no end to his disguises of benevolence?”

— Margaret Atwood, The Handmaid’s Tale

Our journey is coming to an end. Across this thesis, we saw that post-quantum
cryptography can be used to surprisingly enhance quantum cryptography, up
to the point of revealing previously unimaginable applications. It is now time

to quickly summarize our findings and describe some ongoing projects I am currently
working on.

The first fundamental discovery of our work is the creation of a series of protocols
called QFactory, realizing for the first time a core atomic primitive: classical-client
Remote State Preparation (RSP). It allows a purely classical client to prepare on a remote
quantum server a quantum state, in such a way that the classical description of that state
is only known to the client. We show how to produce various sets of states, including a
set of states which is universal and can be used to produce any state. Moreover, we also
show how to produce large multi-qubits GHZ states more efficiently.

This modular primitive can be used to replace quantum channels by classical channels,
which is particularly interesting as quantum channels are extremely hard to deploy widely
and are not always compatible with the promising technologies used to build quantum
computers. Notably, we showed how our QFactory protocol can be used modularly inside
the UBQC [BFK09] protocol to allow a classical client to delegate a quantum computation
to an untrusted remote quantum server without revealing the input, the output and the
algorithm in use.
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In order to obtain such a functionality, we rely on the hardness of the Learning With
Errors (LWE) problem. We explicitly provide two constructions, depending on whether
we want to rely on the hardness of LWE with superpolynomial noise ratio, or on the more
standard LWE with polynomial noise ratio1. To that end, we provide a detailed analysis
in order to find a set of parameters fulfilling all the requirements of our constructions.

We also showed that classical-client RSP protocols cannot be proven secure in a general
composable framework: as a result, all our security proofs are stated in the weaker game-
based security model. Our result is very general and also apply to approximate “noisy”
RSP resources. Moreover, we proved that if we replace the quantum channel of the UBQC
protocol with any classical-client RSP protocol, then the resulting protocol cannot be
generally composably secure.

While QFactory can be used in order to turn quantum clients into classical clients
in existing protocols, we also showed that it can be useful to obtain new—a priori
unrelated—protocols that were unimaginable before. Notably, we showed that a party can
send a quantum state to a recipient while proving non-interactively and non-destructively
highly non-trivial properties on the received quantum state (we call this functionality
NIZKoQS). In particular, we can prove any property on the set of entangled qubits of a
transmitted quantum state, potentially linked with classical secret data.

Finally, we showed how our QFactory protocol can be extended to a multi-party
setting. Combined with NIZKoQS, it proves useful to allow an untrusted source to
distribute a GHZ state in such a way that the participants can be filtered in an arbitrary
way, so that the identity of the filtered participants remains hidden to all parties, including
the source. In particular, this can be used to filter and anonymize the list of participants
in any protocol involving shared GHZ states. We also mention potential use cases, notably
to obtain anonymous filtered quantum secret sharing or quantum onion routing protocols.

Regarding ongoing projects, we already presented in the concluding section of each
chapter some remaining open questions. More recently, I’ve also been working on various
problems, for instance to use QFactory to avoid the impossibility result on classical
Position Based Verification (answered meanwhile in [LLQ21]) or on unrelated methods to
obtain One-Time Memories (this project is still too fresh to be presented in this thesis).

1In that latter case, we need to rely on an additional conjecture for the security proof to hold.
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The Concluding Word

Nature is fair and in favor of equity.
Sadly, fairness has a price called “efficiency”.
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