TD 3 Advanced cryptography 2024

Léo Colisson Palais

Exercice 1: Basics on lattices

- 1. Is the 1D lattice generated by (1) and $(\sqrt{2})$ a valid lattice? Hint: consider the sequence $(\sqrt{2}-1)^l$
- 2. Let **B** be a basis of the lattice \mathcal{L} and $\mathbf{U} \in \mathbb{Z}^{k \times k}$ be an invertible matrix s.t. $\mathbf{U}^{-1} \in \mathbb{Z}^{k \times k}$. Show that $\mathbf{B} \cdot \mathbf{U}$ is also a basis of $\mathcal{L}(\mathbf{B})$.
- 3. Show an efficient algorithm to check if a vector v belongs to a full-rank lattice given a basis B. Hint: consider B^{-1} .
- 4. Building on the previous question, propose an efficient algorithm to decide if two lattices $\mathcal{L}(B_0)$ and $\mathcal{L}(B_1)$ are equal.

Exercice 2: LLL

- 1. Let r := 1.9100446 be a root of an unknown polynomial of the form $ax^3 + bx^2 + cx + d$, where a, b, c and d are small integers. The goal is to determine a, b, c and d.
 - (a) Can you propose a first algorithm based on the attack against the Merkle-Hellman cryptosystem?
 - (b) Are all solutions to your above algorithm necessary polynomials such that r is a root of this polynomial? If not, can you propose a fix to arbitrarily increase the chance of finding a solution where r is actually a root of your polynomial.
 - (c) Implement your algorithm in sagemath (you may want to use matrices over QQ).
- 2. Run the LLL algorithm manually for $\delta = \frac{3}{4}$ on the basis vectors $\begin{pmatrix} 201\\ 37 \end{pmatrix}$ and $\begin{pmatrix} 1648\\ 297 \end{pmatrix}$.