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Exercice 1: Security of Regev’s encryption

Solve the questions from the slides, i.e. show that for appropriately chosen parameters, the LWE-based
encryption seen in the course is secure assuming the hardness of LWE.

Exercice 2: Worst case to average case reduction

One may be worried that the LWE problem may be hard in the worst case (“there exists a few hard
instances”), but that it is still insecure on average (“if I pick a random LWE instance, it is easy to break
on average”). In this exercise, we will show that if the LWE problem is hard in the worst case, it is also
hard on average. Or said differently, if we can break LWE on average, we can break all LWE instances. In
the following, As,χ will denote the LWE distribution sampling a $← Zn

q , e← χ and returning (a,aT s+ e),
where n and q are integers and χ is a distribution on Zq. For any set S, US will denote the uniform
distribution on S, and we define U := UZn

q×Zq .

1. For any t ∈ Zn
q , let ft : Zn

q × Zq → Zn
q × Zq be defined as ft(a, b) := (a, b+ aT t). For any t and s,

show that ft(As,χ) = As+t,χ, i.e. that the distribution obtained by applying ft to a sample of As,χ

is statistically indistinguishable from a sample of As+t,χ.

Correction. For any x ∈ Zn
q × Zq, we have:

Pr [ ft(As,χ) = x ] (1)

= Pr
a $←Zn

q
e←χ

[
ft(a,a

T s+ e) = x
]

(2)

= Pr
a $←Zn

q
e←χ

[
(a,aT s+ e+ aT t) = x

]
(3)

= Pr
a $←Zn

q
e←χ

[
(a,aT (s+ t) + e) = x

]
(4)

= Pr [As+t = x ] (5)

2. Show that the image of the uniform distribution on Zn
q × Zq by ft is the uniform distribution on

Zn
q × Zq, i.e. ft(UZn

q×Zq
) = UZn

q×Zq
.

Correction. For any (x0, x1) ∈ Zn
q × Zq, we have:

Pr [ ft(U) = (x0, x1) ] (6)

= Pr
a $←Zn

q

b $←Zq

[ ft(a, b) = (x0, x1) ] (7)

= Pr
a $←Zn

q

b $←Zq

[
(a,aT t+ b) = (x0, x1)

]
(8)

= Pr
a $←Zn

q

b $←Zq

[
a = x0 ∧ aT t+ b = x1

]
(9)

= Pr
a $←Zn

q

b $←Zq

[
a = x0 ∧ b = x1 − aT t

]
(10)

=
1

qn
× 1

q
(11)

= Pr [U = (x0, x1) ] (12)
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3. We assume that there exists a polynomial-time algorithm W that distinguishes UZn
q×Zq

from As,χ on
average, i.e. such that there exists a set S ⊆ Zn

q of elements where W guesses reasonably correctly,
i.e. such that for any s ∈ S and large enough n,

| Pr
x←As,χ

[W (x) = 1 ]− Pr
x $←Zn

q×Zq

[W (x) = 1 ] | ≥ 1

nc
(13)

for some integer c > 1, and such that S covers a non-negligible fraction of Zn
q ×Zq, i.e. there exists

some integer c′ > 1 such that, for large enough n:

|S|
qn+1

≥ 1

nc′
(14)

Our goal is to use W to build an adversary able to break LWE for all instances.

(a) Without loss of generality, we can assume that W outputs either 0 or 1. Show that

Pr
x←D

[W (x) = 1 ] = E
x←D

[W (x) ] (15)

Correction. We have by definition of the esperance and from the fact that W outputs either
0 or 1:

E
x←D

[W (x) ] = 0× Pr
x←D

[W (x) = 0 ] + 1× Pr
x←D

[W (x) = 1 ] = Pr
x←D

[W (x) = 1 ] (16)

(b) First, show that for any distributionD, one can efficiently estimate the quantity Prx←D [W (x) = 1 ],
i.e. that there exists a procedure Estimate(D) running in time polynomial in n, such that the
probability to have:

|Estimate(D)− Pr
x←D

[W (x) = 1 ] | ≥ 1

10nc
(17)

is negligible in n.

Hint: For this, you may want to use the inequality of Hoeffding, that (in particular) states that
if N independent random variables V1, . . . , VN are bounded by 0 and 1, then for any t ≥ 0,

Pr

[ ∣∣∣∣∣∑
i

Vi − E

[∑
i

Vi

]∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
−2t2

N

)
(18)

Correction. We define Estimate(D) as the operation that averages D over N (to be determine
later) independent samples, i.e.:

Estimate(D) :=
1

N

N∑
i=1

D (19)

We compute now the precision of this function:

Pr

[
|Estimate(D)− Pr

x←D
[W (x) = 1 ] | ≥ 1

10nc

]
(20)

= Pr

[
| 1
N

N∑
i=1

D − Pr
x←D

[W (x) = 1 ] | ≥ 1

10nc

]
(21)

= Pr

[
|

N∑
i=1

D −N Pr
x←D

[W (x) = 1 ] | ≥ N

10nc

]
= Pr

[
|

N∑
i=1

D − E
x←D

[NW (x) ] | ≥ N

10nc

]
(See eq. (15))
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We can now apply the inequality of Hoeffding with V1 := · · · = VN := D (all independent
copies of D, which are indeed bounded by 0 and 1 if we consider that W outputs either 0 or
1), and t = N

10nc :

Pr

[
|

N∑
i=1

D − E
x←D

[NW (x) ] | ≥ N

10nc

]
(22)

≤ 2 exp

(
−
2
(

N
10nc

)2
N

)
(Hoeffding)

≤ 2 exp

(
− 2N

(10nc)2

)
(23)

If we define for instance N = n(10nc)2, then the probability of having a poor estimate is
negligible:

Pr

[
|Estimate(D)− Pr

x←D
[W (x) = 1 ] | ≥ 1

10nc

]
≤ 2 exp (−2n) = negl(n) (24)

(c) Show that with overwhelming1 probability:

|Estimate(U)− Estimate(U)| ≤ 2

10nc
(25)

and explain why this does not trivially simplify to 0.

Correction. Estimate(U) is not a deterministic function, hence this does not trivially simplify
to 0. Using the triangle inequality, we know that

|Estimate(U)− Estimate(U)| (26)

=

∣∣∣∣Estimate(U)− Pr
x←U

[W (x) = 1 ] + Pr
x←U

[W (x) = 1 ]− Estimate(U)

∣∣∣∣ (27)

≤ 2

∣∣∣∣Estimate(U)− Pr
x←U

[W (x) = 1 ]

∣∣∣∣ (28)

≤ 2

10nc
(29)

where the last inequality holds with overwhelming probability based on eq. (17).

(d) Show that for any s ∈ S, with overwhelming probability:

|Estimate(As,χ)− Estimate(U)| ≥ 8

10nc
(30)

Correction. For simplicity, we denote by a := Estimate(As,χ), u := Estimate(UZn
q×Zq

), a′ :=

Pr
[
W (x) = 1

∣∣ x← As,χ

]
and u′ := Pr

[
W (x) = 1

∣∣ x← UZn
q×Zq

]
. By assumptions and based

on the previous question, we know that:

• since s ∈ S, we have |a′ − b′| ≥ 1
nc

• with overwhelming probability, |a− a′| ≥ 1
10nc

• with overwhelming probability, |b− b′| ≥ 1
10nc

Since we want to lower bound rather than upper bound |a − b|, we cannot directly use the
triangle inequality on |a− b|, so instead we apply it to |a′− b′| in order to make |a− b| appear
on the other side, before reordering the term to isolate |a − b|. More precisely, the triangle
inequality gives:

|a′ − b′| = |a′ − a+ a− b+ b− b′| ≤ |a′ − a|+ |a− b|+ |b− b′| (31)

hence

|a− b| ≥ |a′ − b′| − |a′ − b| − |b− b′| ≥ 1

nc
− 1

10nc
− 1

10nc
=

8

10nc
(32)

1I.e. the probability of not having this equation true is negligible over the randomness involved in Estimate.
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(e) We define now the algorithm W ′(D) where D is a distribution on Zn
q ×Zq given as a black-box

oracle to W ′, that will internally calls W and try to guess if D is the uniform distribution
or a LWE distribution. More precisely, W ′(D) will repeat M times (M being a polynomial
in n to be determined later) the following procedure: it will pick a random t $← Zq, compute
|Estimate(ft(D))−Estimate(U)|: if this value is greater than 1

2nc , it will output “LWE”, other-
wise it continues the loop. If at the end it has not returned before, it will output “Uniform”.

i. Show that W ′ is correct when the input is a uniform distribution and when M ≥ 1, i.e.
with overwhelming probability, W ′(U) = “Uniform”.

Correction. We have seen in question 2 that ft(U) = U , so Estimate(ft(U)) = Estimate(U),
and with question 3.b we know that with overwhelming probability, |Estimate(U)−Estimate(U)| ≤

2
10nc < 1

2nc , so after the first round (exists since M ≥ 1) with overwhelming probability
we return “Uniform”.

ii. Let s ∈ Zn
q . Show that the probability that W ′(As,χ) returns “LWE′′ after 1 iteration of

its inner loop is lower bounded by 8
10nc .

Correction. Let s ∈ Zn
q . We first determine the probability of returning “LWE” for a given

iteration of the loop of W ′(As,χ). First, we saw in question 1 that ft(As,χ) = As+f ,χ.
Since we know that W is good to answer correctly when the distribution is some As′,χ

with s′ ∈ S, we want to compute the probability of having s′ := s+ f ∈ S:

Pr [ s′ ∈ S ] = Pr
t $←Zn+1

q

[ s+ t ∈ S ] (33)

= Pr
t $←Zn+1

q

[ t ∈ {x− s | x ∈ S} ] (34)

=
|{x− s | x ∈ S}|

|Zn+1
q |

=
|S|
qn+1

≥ 1

nc′
(35)

where the last inequality is from eq. (14). Now, we return “LWE” iff |Estimate(ft(As,χ))−
Estimate(U)| ≥ 1

2nc (remember that by assumption the input D = As,χ), so

Pr [Return “LWE” (one iteration) ] (36)

= Pr

[
|Estimate(ft(D))− Estimate(U)| ≥ 1

2nc

]
(Definition W )

= Pr

[
|Estimate(As′,χ)− Estimate(U)| ≥ 1

2nc

]
(Question 1)

= Pr [ s′ ∈ S ] Pr

[
|Estimate(As′,χ)− Estimate(U)| ≥ 1

2nc

∣∣ s′ ∈ S

]
+ Pr [ s′ /∈ S ] Pr

[
|Estimate(As′,χ)− Estimate(U)| ≥ 1

2nc

∣∣ s′ /∈ S

] (37)

≥ Pr [ s′ ∈ S ] Pr

[
|Estimate(As′,χ)− Estimate(U)| ≥ 1

2nc

∣∣ s′ ∈ S

]
(Lower bound second term by 0)

≥ 1

nc′
× 8

10nc
=

8

10nc+c′
(See eq. (35) and eq. (30))

Therefore, the probability of correctly returning after one iteration is 8
10nc+c′ . After

iii. Show that if we chooseM large enough (but polynomial),W ′ is correct (with overwhelming
probability) when the input is any LWE distribution, i.e. for any s ∈ Zq, with overwhelm-
ing probability on the randomness of W ′, W ′(As,χ) = “LWE′′. What value can we choose
for M?
Hint: you may need to use the fact that 1 + x ≤ ex.

Correction. We saw in the previous question that each iteration has probability 8
10nc+c′

of (correctly) returning “LWE”. Therefore, W returns an incorrect value if none of the M
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iterations returns, i.e.:

Pr
[
W (As,χ) ̸= “LWE′′

]
=

(
1− 8

10nc+c′

)M

(38)

≤
(
e
− 8

10nc+c′
)M

(1 + x ≤ ex with x = − 8
10nc+c′ )

= e
− 8M

10nc+c′ (39)

If we choose for instance M = nc+c′+1, we have

Pr
[
W (As,χ) ̸= “LWE′′

]
≤ e−8n/10 = negl(n) (40)

i.e. the probability of W ′ outputting an incorrect value is negligible.

iv. Conclude by showing that W ′ runs in polynomial time and that it therefore solves effi-
ciently the LWE problem in the worst case by computing its advantage.

Correction. Trivial: each operation runs in polynomial time since W ′ is efficient, and the
number of repetition M is polynomial, hence W ′ runs in polynomial time. We already
shown that W ′ was correct (with overwhelming probability on the internal randomness
of W ′) both when it has oracle access to the uniform distribution and to As,χ for any s,
hence its advantage is:

|Pr
[
W ′(As,χ) = “LWE′′

]
− Pr

[
W ′(U) = “LWE′′

]
| (41)

= |(1− negl(n))− (0 + negl(n))| (42)

= 1− negl(n) (43)

which is clearly not negligible since it is lower bounded for instance by the constant 1/2.
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