
TP Advanced Cryptography 2024

Léo Colisson Palais

Motivations

The goal of this TP is to code a full system to convert an arbitrary circuit C (made from NOT, AND,
OR and XOR gates) into a non-interactive ZK proof, to prove for instance that we know x such that
C(x) = y for some publicly known y. The high-level picture we will follow is the one described in the
course:

1. first, turn the circuit into an equivalent satisfiable SAT instance s,

2. then turn the satisfiable SAT s instance into a graph g with a Hamiltonian path p,

3. finally prove in ZK that there exists a Hamiltonian path p to g without revealing anything about
g. We will implement here an improvement to represent sparse graphs more efficiently.

I highly recommend to use python (or sage) as a programming language since I’ll provide some tests in
python, provided in file tp 01 tests.py that you should place next to your code, started in the template
tp 01.py.

Notations. In the following, unless otherwise specified, n represents the number of edges in the graph
(clear from the context), e the number of edges, N the number of bytes needed to encode n (i.e. N =

math.ceil(math.log(N, 256))), E the number of bytes needed to encode e, R = math.ceil(options.secpar/8)

will represent the number of bytes of the randomness used for the commitment. We often omit the type
of the functions inputs when the input name is clear (e.g. g represents typically a graph, path a list of
integers, i is an integer etc).

Part 1: Hamiltonian paths and ZK

We will solve these tasks in reverse order. Note that in order to efficiently store and send the ZK proofs,
we will encode them as byte string (bytes in python). As such, we provide in the template a few useful
(but boring) functions:

• bytes str = serialize list(N, int list) returns an object of type bytes, containing N ×
|int list| bytes and encoding the list of integer int list in big endian. Note that N should
be large enough so that the binary representation of the elements in the list fit in N bytes.

• int list = deserialize list(N, bytes str) is the reverse operation

• [n1, ..., nj] = deserialize tuple([i1, ..., ij], bytes str) will decode the byte string
assuming it was encoded as the concatenation serialize list(i1, [n1]) + ... + serialize list(ija,

[nj]) (so contrary to the previous function, elements can have different size, but their number is
known in advanced). If some of these elements are byte string instead of numbers (e.g. if the string
was obtained as bytes str = serialize list(i1, [n1]) + s2 with s2 a byte string of length
i2), you should replace the corresponding size with something like:
[n1, s2] = deserialize tuple([i1, ("bytes", i2)])

• b = get bit(bytes str, i) returns the i-th bit of bytes str of type bytes.

You need now to implement the other functions:

1. First, define a python class Options (used to keep track of the various security parameters used
along the protocol) that can be initialized with two optional arguments: secpar will default to 80
and rounds defaults to secpar unless otherwise specified. Make sure to test your code thanks to the
tests we provide (and do the same for all other questions).

1

2. Then, create a class Graph() to represent a graph g = Graph(). We choose to represent any graph
g thanks to its number n of nodes (each node is labeled in [n] := {0, . . . , n− 1}), and by its list of
directed edges of the form (a, b) ∈ [n]2. Create the methods:

• v = g.add node() that adds a node and returns the id of this node (v ∈ [n]),

• g.add edge(a,b) that adds an edge (returns nothing),

• b = g.edge exists(a,b) that outputs True if the edge (a, b) exists and False otherwise
(WARNING: this operation should be done in constant/logarithmic time over the number
of edges),

• g.add double edge(a,b) that adds both an edge from a to b and from b to a,

• n = g.len() that returns the number of nodes,

• l = g.edges() that returns the sorted list of edges of g (just use sorded(...) to sort it
alphabetically),

• You may also benefit from coding a helper function s = g.get graphviz() that outputs
a string representing the graph like digraph G {n0 -> n1; n1 -> n2;} that you can for
instance visualize in https://dreampuf.github.io/GraphvizOnline (it may be easier to see the
graph with the fdp engine).

3. Write a function b = is hamiltonian path(g, path) that outputs a boolean, true iff the path
path is Hamiltonian. The path is coded as the list of vertices to follow (starting from the first
element in the list), like p = [0, 1, 2].

4. Write a function generate permutation(n) (calling only the external, crypto-secure library randbelow(i)
to sample an element in [i]) that returns a uniformly distributed random permutation of [n]. This
algorithm should follow the Fisher-Yates algorithms, that starts from the list [0,1,...,n-1], and
exchanges the first element of the list with a random element to its right (possibly exchanged with
itself), then exchanges the second element of the list with a random element to its right etc (so the
first element of the list is never changed anymore).

5. Implement 2 functions to implement commitments:

• A function (r, c) = commit(options, message) to commit a message of type bytes, where
options an instance of Options (the length of the randomness r is math.ceil(options.secpar/8)),
and c is of type bytes. The commitment is done by sampling r using token bytes, and the
hash is computed via hashing with SHA3-224 the randomness r concatenated with the message
(use the imported c = sha3 224(...).digest()).

• A function check commit(options, c, r, message) that outputs a boolean, true iff the
opening (r, message) is valid.

6. Implement the functions corresponding to the ZK protocol that checks if a graph admits a Hamil-
tonian path:

• First, the function (info open, commitments) = commit phase(g, path, options=Options())

that implements the first (commit) phase of the protocol. info open represents an arbitrary
structure kept by the prover for the second phase, while commitments has type bytes, and
length 28× (1+ e) bytes (28 is the output size of SHA3-224). The first block of 28 bytes is the
commitment of the permutation π (serialized via the above functions, where [i1, . . . , in] repre-
sents the permutation mapping the node 0 to i1, the node 1 to i2. . .) used in the ZK protocol,
and the remaining e commitments are the commitments of the edges of gπ (permutation of
the graph g). Note that the position of the edges in this list must be randomized for security
reasons!

• Then, the function openings = open phase(info open, b) runs the opening phase based on
the challenge b ∈ {True, False}. openings has type bytes, whose format is described in the
template.

• Finally, the function (ok, reason) = verify(g, commitments, b, opening, options=Options())

perform the verification done by the verifier assuming the challenge was b. ok is true iff the
verifier accepts, and reason is an arbitrary (regular) string that gives a reason of rejecting
(useful for debug mostly).

2

https://dreampuf.github.io/GraphvizOnline/?compressed=CYSw5gTghgDgFgAgOIIN4DsAMCC0A%2BBdARgG5CjcD0AmEgXyA

7. Implement the functions to make this verification non-interactive based on the Fiat-Shamir trans-
form:

• challenges = fiat shamir randomness(options, commitments, message) returns a list
of integers (0 or 1) used as the sequence of challenges in the Fiat-shamir proof. We use SHA3-
224 to implement the random oracle in the Fiat-Shamir proof (you might benefit from the
helper function get bit described above). Since the number of rounds may be larger than 224
(number of output bits of SHA3-224), you should get enough bits by concatenating:
SHA3-224(0∥r∥m)∥SHA3-224(1∥r∥m)∥SHA3-224(2∥r∥m) until you have enough bits for the
challenge, where the number starting the string to hash is encoded into just enough bits so
that the largest integer fits into this size. You should also concatenate at the end of each mes-
sage to be hashed the bytes message to obtain a signature following the principle of Schnorr’s
signature. Do you see why we need to use here a hash function that is resilient against length-
extensions attacks? Would it be secure1 with, e.g., SHA-256 or SHA-512? Write your answer
in the doc string of the function.

• proof = fiat shamir proof(g, path, message=b’’, options=Options()) that implements
the Fiat-Shamir transform of the above protocol, returning a unique, non-interactive, proof.
The format of the proof of type bytes is the concatenation of all the commitment phases,
followed by the concatenation of all the openings.

• verify fiat shamir proof(g, proof, message=b’’, options=Options()) is the verifica-
tion procedure.

Part 2: SAT to Hamiltonian graph

Now that we can prove that a graph is Hamiltonian, we want to prove statements about generic circuits
and not just graphs. The first step is to turn a SAT instance into a Hamiltonian path as seen in the
course.

1. Write the graph from sat(sat, evaluation=None) function. sat is a list of clause, for instance
[[1], [-1, 2]] represents the formula (a)∧ (¬a∨ b) (see the template for details). This functions
either returns a single graph g corresponding to the sat formula if evaluation is None (see the
template that documents the convention to follow on the naming the nodes to keep compatibility
with the testing procedure and other implementations). When evaluation is a dictionary such that
evaluation[v] contains the boolean value that the variable v (represented by an integer ≥ 1) must
take to satisfy sat, the function returns (g, path) where path is a Hamiltonian path in g.

Part 3: Circuit to SAT

Finally, we can now write the functions to convert arbitrary circuits C to a SAT instance (and therefore
a Hamiltonian graph) in order to prove that there exists x such that C(x) = y for some public y.

1. Here, we write a single function that allows both the verifier to obtain the wanted SAT formula
from a given circuit circ, but also the prover to obtain both the SAT formula and an evaluation
evaluation = circ.get evaluation() of the variables that ensure the SAT formula is true. More
precisely, write a class circ = Circuit() with the following methods:

• sat = circ.get sat() returns the sat clauses to satisfy the circuit.

• v = circ.add var(val=None) creates a new input variable (start from 1 and increment).
When val is a boolean, it should be understood as if we are evaluating the circuit with input
value val (note that this should not add any clause, this is just helpful to derive the evaluation
dictionary).

• evaluation = circ.get evaluation() returns the table such that evaluation[v] is True
iff the variable v must be true in order to satisfy the SAT formula (if the input of add var

were not provided, this can be an empty dictionary).

1You may want to use https://en.wikipedia.org/wiki/Secure_Hash_Algorithms as a basic to compare hash functions.

3

https://en.wikipedia.org/wiki/Secure_Hash_Algorithms

• circ.is true(v) (resp. circ.is false(v)) adds a constraint (clause) that forces the variable
v to be true (resp. false): not that this variable is typically an output variable that we want
to force to be true, e.g. to force f(x) = y.

• c = circ.add and(a, b) creates a new variable identifier c that should be equal to the AND
of the variables a and b (by adding new clauses in the SAT formula, and by updating the
evaluation map if possible). For better compatibility with the tests and other implementa-
tions, add the clauses in the order specified by this table (cf. Tseytin transformation in the
course):

Name Operation CNF

AND c = a ∧ b (a ∨ −c) ∧ (b ∨ −c) ∧ (−a ∨ −b ∨ c)

OR c = a ∨ b (−a ∨ c) ∧ (−b ∨ c) ∧ (a ∨ b ∨ −c)

XOR c = a⊕ b (a ∨ b ∨ −c) ∧ (a ∨ −b ∨ c) ∧ (−a ∨ b ∨ c) ∧ (−a ∨ −b ∨ −c)

NOT b = ¬a (a ∨ b) ∧ (−a ∨ −b)

We can assume that both a and b are positive variable identifier. Similarly, define c = circ.add or(a,

b), c = circ.add xor(a, b) and b = circ.add not(a).

Part 4: Application; playing with a (simplified) Game of Life

We now have all the tools to prove arbitrary statements on the result of a circuit. We exemplify it
on the “Rule 110”2 automaton game (1D equivalent of the famous Game of Life3). In the Rule 110
game, a boolean array A of size w ∈ N (sometimes considered infinite) is initialized to an arbitrary
starting position: then, at every iteration, the array is updated into A′ following a simple rule based on
the neighboring cells of each cell: for any i ∈ [w], A′[i] = ((¬A[(i − 1) mod w]) ∧ A[i mod w]) ∨ (A[i
mod w] ⊕ A[(i + 1) mod w]). For instance, here are the first 20 iterations (one iteration per line, X =

True) of a board initialized with a single cell:

| X |

| XX |

| XXX |

| XX X |

| XXXXX |

| XX X |

| XXX XX |

| XX X XXX |

| XXXXXXX X |

| XX XXX |

| XXX XX X |

| XX X XXXXX |

| XXXXX XX X |

| XX X XXX XX |

| XXX XXXX X XXX |

| XX X XX XXXXX X |

| XXXXXXXX XX XXX |

| XX XXXX XX X |

| XXX XX X XXXXX |

| XX X XXX XXXX X |

| XXXXX XX XXX X XX |

In this part, we want to obtain a ZK proof proving that we know a secret initial disposition that maps
to a publicly known final disposition.

1. Write a function (sat, evaluation, last position) = game 110 sat(position, n, is starting=True),
such that:

2https://en.wikipedia.org/wiki/Rule_110
3https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

4

https://en.wikipedia.org/wiki/Rule_110
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

• if is starting=True, position corresponds to the boolean array of the initial position,
last position corresponds to the final boolean array after n iterations, SAT corresponds
to a SAT formula that is satisfied by the evaluation evaluation, and that represents the
circuit that runs n iterations and checks if the final disposition is last position.

• if is starting=True, then position corresponds to the final disposition to obtain (run by
the verifier since they don’t know the initial position). In this case, evaluation is not used,
last position equals position, and sat is the SAT formula that is satisfiable only if there
exists an initial position reaching to the final position position after n steps.

2. Write a function (proof, last position) = game 110 zk proof(starting position, n, options=Options()),
run by the prover, that outputs a non-interactive ZK proof that there exists a starting position lead-
ing to last position after n runs.

3. Finally, write the corresponding verification function (ok, reason) = game 110 zk verify(last position,

n, proof, options=Options()) that returns ok = true iff proof is a valid proof that there ex-
ists an initial position leading to last position after n iterations. Reason is as before an arbitrary
string explaining the reason of the rejection of the proof if needed.

5

