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Zero-knowledge

Zero-Knowledge (ZK) Proof = prove a statement without revealing anything
beyond the fact that the statement is true.
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Applications ZK

Many applications:
e Authentication: “I know a secret x such that SHA3(x) = y”

* Privacy-preserving blockchain: “I can prove that this transaction is valid
without revealing the sender, receiver, nor the amount of the transaction”
(ZCash, see also smart contracts)

e Multi-party computing: “This circuit is an honesty-prepared garbled
circuit, but I won't reveal the keys of the circuit”

e Sensitive data: Say that the hash of your DNA (or medical record...) is
signed by a trusted authority. Then you can prove to any insurance that
you do not have a given genetic disorder without revealing your full DNA.
Also works to prove that your salary is greater/lower than XXX without
revealing it etc (needed by banks, housing allowance...).
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Classical Zero-Knowledge
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Generalizable in a non-interactive way to NP problems.



Issues

Still many questions:
e Sudoku are nice, but what else?
e How to replace physical cards?
e Can we make it fully non-interactive?
e Can we make the verification, e.g., logarithmic time?
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ZK proofs for NP
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Definition (NP reminder)

A language £ C {0,1}* is said to be in the NP (nondeterministic poly-
nomial time) class if there exists an efficient (polynomial time) Turing
machine V such that x € L iff there exists a witness wy such that
V(x,wx) =1 (we may write XRwy).

L.e. a problemisin NP if it is easy to verify a solution.
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Examples of NP problems:
e The language of Sudoku (of arbitrary size) with a solution is in NP:

26 1]2]6[5]7]8[a]3]0
1]7 alsls|olz]2|1]7]6
K 6 7lol3|1]ale|s]s]2
6 s [s] |3 26 ]1]a]s|7]89]3
afl2le1]7 =|s|3|9]|2|6|1|7]5]|4]|(easy to verify)
s| 4] [e 6 s|7]al3]8lol2]6]n
8| |43 6|5|2|8|9|4a|3|1]7
4s olals|7]1]3]e|2]5
94 3(1]7]6l2]5]|9]a]s

e 3-SAT
e Graph coloring
* Hamiltonian path

Léo Colisson | 7
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Examples of NP problems:
e The language of Sudoku (of arbitrary size) with a solution is in NP:

26 1]2]6[5]7]8[a]3]0
1]7 alsls|olz]2|1]7]6
K 6 7lol3|1]ale|s]s]2
6 s [s] |3 26 ]1]a]s|7]89]3
afl2le1]7 =|s|3|9]|2|6|1|7]5]|4]|(easy to verify)
s| 4] [e 6 s|7]al3]8lol2]6]n
8| |43 6|5|2|8|9|4a|3|1]7
4s olals|7]1]3]e|2]5
94 3(1]7]6l2]5]|9]a]s
¢ (3-SAT)= NP-complete

* (Graph coloring )= NP-complete
o [Hamiltonian path]:> NP-complete
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Definition (NP complete)

A language L is NP complete if given access to an oracle O(x) :=x € L,
one can efficiently tell if X' € £’ for any NP language £’ and word x'.

Léo Colisson | 8
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ZK for NP

Theorem (informal)

For any NP language L, there exists a zero-knowledge protocol to prove
that a given word x belongs to £. Notably, no information on the witness
Wy is leaked to the prover.

Proof strategy:
L — SAT —— Hamiltonian path —— ZK for Hamiltonian path

Léo Colisson | 9
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ZK for NP, step 1: £ to SAT

Definition (SAT)

A SAT (Boolean satisfiability) instance is defined by a conjunction of
clauses, where each clause is the disjunction of multiple literals (a
boolean variable or the negation of a boolean variable).

A SAT instance is said to be satisfiable if there exists an assignment mak-
ing the final formula true.

E.g.:
e (avb)A(=bvcvd)A(aV—d)
e (av-bv-c)yn(avbvc)A(bV-c)

Léo Colisson | 10
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ZK for NP, step 1: £ to SAT

First step: reduce L to a SAT instance (possible: SAT is NP complete and L is in
NP). How?

= Tseytin transformation:
e x is public, so we can consider the boolean circuit of the function
f(w) =V(x,w)
e Add a new variable for each wire in the circuit of f (need to add new
variables to avoid exponential increase in the number of clauses)

e For each gate g in the circuit of f, add new clauses to constraint the
variable of the output wire o to be such that o = g(iy, ..., in) where
i1,...,In are the variable of the input wires of g. How to find the clauses?

Léo Colisson | 11
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ZK for NP, step 1: £ to SAT

How to find the clauses to constraint o = g(iy, ..., in)?
@ Method 1:

® Rewrite 0 & g(iy,...,In) as a boolean formula ¢ involving only A, v and —,
using the factthata = b iff b v —a.

® Express —¢ as a disjunctive normal form, using first the Morgan laws
(=(AVvB)=(-A)A(-B)and -(A AB) = (—A) v (—B)) to “push down” the
negations, then distributivity laws (AVvB)AC = (AAC)V (BAC))to “push
down” the conjunction.

® Compute again the negation of —¢ to recover ¢ (since ——¢ = ¢) using
Morgan laws and simplification of double negation to get the conjunctive
normal form of ¢

Léo Colisson | 12
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ZK for NP, step 1: £ to SAT

E.g. for c = a A b (we denote —a as @, A as multiplication and Vv as addition since distributivity is
easier to see with this notation):

¢ = (¢ < ab) = (¢ = ab)(ab = ¢) = (ab +¢)(c + ab)

b= (ab+7c)(c+ab)=ab+c+c+ab=abc+cab = (@+ b)c+cab = ac + bc + cab
¢ = ¢ = ac + bc + cab = (ac)(bc)(Cab) = (@+<)(b+¢)(C+a+b) = (a+ )b +c)(c+a+b)
Hence we add the clauses (aVv —¢c) A (bV —c) A (cV —a V —b)

Similarly, for an OR gate: (aVbV¢) A (@avc)A(bVec)

Léo Colisson | 13
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ZK for NP, step 1: £ to SAT

How to find the clauses to constraint o = g(iy, ..., #n)?
® Method 2:
e Write the truth table of 0 < g(iy,...,in)
® Remark that the expression is true only if we are not in each line where the
truth table is wrong: this directly gives a CNF by putting one clause per such
line, where the literals are the negation of the assignments of this line.

E.g.forc=aAb:
b c | Truthvalue Clausesto add

a

0 0 0 1

0 0 1 0 avbv-c

01 0 1

01 1 0 av-bv-c (maybe not optimal, see also Karnaugh map)
10 0 1

1 0 1 0 -aVvbvVv-c

1 1 0 0 -aVv-bvc

11 1 1

Léo Colisson | 14
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ZK for NP, step 2: SAT to Hamiltonian path

Issue with SAT: no good way to do ZK directly on SAT.

= Turn SAT to Hamiltonian path!

Léo Colisson | 15
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ZK for NP, step 2: SAT to Hamiltonian path

Definition (Hamiltonian path)

A Hamiltonian path in a directed graph G = (V,E) is a path P = (v1,...,vn) Where
n = |V|, i.e. a list of nodes such that for any i, (v;,vi;1) € E, that visits all vertices in V
exactlyonce (i.e. foralli # i’, v; # vy). The decision version of the problem is to determine
if there exists such a path.

Which graph(s) admit(s) an Hamiltonian path?

O None

® Firstone
@ Second one
® Both

Léo Colisson | 16
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ZK for NP, step 2: SAT to Hamiltonian path

Definition (Hamiltonian path)

A Hamiltonian path in a directed graph G = (V,E) is a path P = (v4,...,va) Where
n = |V|, i.e. a list of nodes such that for any i, (v;,vi;1) € E, that visits all vertices in V
exactlyonce (i.e.foralli # i’, v; # v). The decision version of the problem is to determine
if there exists such a path.

Which graph(s) admit(s) an Hamiltonian path?

® None
O Firstone

@ Second one

® Both

Léo Colisson | 16
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ZK for NP, step 2: SAT to Hamiltonian path

Theorem (Hamiltonian path is NP-complete)

For any SAT instance S, one can build in polynomial time a graph Gs that
admits a Hamiltonian path iff S is satisfiable.

Instead of proving that a SAT instance is satisfiable, we can prove that a graph
has a Hamiltonian path!

Léo Colisson | 17
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ZK for NP, step 2: SAT to Hamiltonian path

Step 1 construction: for each variable x, we create a diamond as follows, where the middle
pattern repeats j times, where j is the number of clauses in S involving x:

second clause

first clause

How many Hamiltonian paths can you find in this graph?
0o
(B
@

® 3 or more

Léo Colisson | 18
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ZK for NP, step 2: SAT to Hamiltonian path

Step 1 construction: for each variable x, we create a diamond as follows, where the middle
pattern repeats j times, where j is the number of clauses in S involving x:

How many Hamiltonian paths can you find in this graph?
Qo
(B
G2y

® 3 or more
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ZK for NP, step 2: SAT to Hamiltonian path

Step 2 construction: we connect the diamonds as a chain (order does not
matter)

How many Hamiltonian paths can you find
in this graph (suppose S has n variables)?

Qo0
®n
@2
® Other

Léo Colisson | 19
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ZK for NP, step 2: SAT to Hamiltonian path

Step 2 construction: we connect the diamonds as a chain (order does not
matter)

How many Hamiltonian paths can you find
in this graph (suppose S has n variables)?

Qo0
®n
@2y
® Other
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ZK for NP, step 2: SAT to Hamiltonian path

Last step construction: we add one node n. per clause ¢, and for each variable x in ¢, we add
two edges from this node to the two nodes a and b (a being to the left of b) of a free blue block
in the diamond of x, where the direction is a — n. — b if the variable appears positively in the
clause, and b — n. — a if the negation of x is in the clause.

What is the formula encoded by the graph on the
left?

O (-av-b)A(a)
(av —=b) A (—a)
(aVv =b) A (maV —b)
(aVv =b) A (—cC)
(an=b)V (—a)

(8]
CJ
D]
e

Léo Colisson | 20
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ZK for NP, step 2: SAT to Hamiltonian path

Last step construction: we add one node n. per clause ¢, and for each variable x in ¢, we add
two edges from this node to the two nodes a and b (a being to the left of b) of a free blue block
in the diamond of x, where the direction is a — n. — b if the variable appears positively in the
clause, and b — n. — a if the negation of x is in the clause.

What is the formula encoded by the graph on the
left?

O (-av-b)A(a)

(av -b) A (-a)
(aVv =b) A (maV —b)
(aVv =b) A (=)
(an=b)V (—a)

0
CJ
D]
e
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ZK for NP, step 2: SAT to Hamiltonian path

A
&e Q,W‘

The resulting graph admits a Hamiltonian path iff S is
satisfiable.

Proof skech:

<! quite easy

= bit more technical: we must prove that all Hamiltonian
paths have a “normal” form, i.e.:

e it visits the variables in order,

¢ all nodes of the variable are visited in a “Z" shape (two
possible directions = interpret as true or false),

e if we leave one node in a blue box to a clause node, the
next step is on the other node in the same blue box,

(Demonstration on board)

Léo Colisson | 21
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ZK for NP, step 2: SAT to Hamiltonian path

NB: important to keep the “separation nodes” between the blue boxes! Otherwise possible
to find weird paths visiting the nodes in different directions:

!

Léo Colisson | 22
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What is the cryptographic equivalent of the “cards” used in the sudoku game?

Léo Colisson | 23
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What is the cryptographic equivalent of the “cards” used in the sudoku game?

= commitments!

Léo Colisson | 23
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Commitments

Definition (Commitment)

Let Commit(x,r), Open(c, x,r) be two probabilistic algorithms (implicitly depending on
a security parameter \). They are said to be a commitment if it is:
® Correct: for any x and r, Open(Commit(x,r),x,r) =T

¢ Hiding: “Commitments reveal no info on x”
For any x,x’, and adversary A,

Pr r&{0,132 [A(C) :1] — Pr r&10,132 [A(C) =1]
c<+Commit(x,r) c+Commit(x’,r)

* Binding: “Hard to open to two different values”
For any adversary A,
Pro o rx ryea@y LOPEN(C,X,T) = Open(c,x’,r’) = T Ax # X'] < negl())

< negl(})

Léo Colisson | 24
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How to obtain commitments?

¢ Method 1: Random Oracle model: ,
Commit(x,r) = H(r||x), Open(c,x,r) = (¢ = H(r||x))
¢ Method 2: One-way permutations (bit commitment):
° f:{0,1}* — {0,1}*
* p:{0,1}* — {0,1} hard-core predicate
(hard to guess p(x) given f(x), exists thanks to the Goldreich-Levin theorem)
* xe{0,1}

Commit(x, ) = (f(r), p(r) & x), Open((y, b),x,r) = ((y,b) = (f(r),p(r) ® X))
(permutation needed for (statistical) binding, otherwise we need
something like collision resistance)

Léo Colisson | 25
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How to obtain commitments?

e Method 3: PRG (exists from one-way functions)
® G:{0,1}* — {0,1}*, such that Vs, |G(s)| = 3|s]
* We assume that the receiver sent a random rq <& {0, 1}°" before the commit
phase
* xe{0,1}

Commit(x,r) = G(r) @ (xrg), Open(c,x,r) = (G(r) @ (xry) Z C)

Léo Colisson | 26
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Commitments

There exists no statistically hiding and statistically binding commitment
scheme, but there exists both:
e statistical hiding + computational binding (many-to-one hash function)

=

e computational hiding + statistical binding (injective hash function)
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ZK for NP, step 3: ZK for Hamiltonian path

Claim (ZK for Hamiltonian path, informal)

For any graph G, it is possible to prove that we know a Hamiltonian path
for G without revealing anything about this path.

Can you find how, based on the Sudoku example?

Léo Colisson | 28
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ZK proof of the Hamiltonian path (informal)

Léo Colisson | 29
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ZK proof of the Hamiltonian path (informal)

)2‘ ?Yo"(/\

T A =2

2~ 4

3 =3

5 ¢ — 1
}/0 ‘2(4 S — 5

- >
h 7
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ZK proof of the Hamiltonian path (informal)

T = commi l’m@»&-
R ?Yo\l&\

/\"’V\/\,\,_> ﬂ_’_,>
=
2 %)

6,/

Gl

~ K
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ZK proof of the Hamiltonian path (informal)

T = commi l’m@»&-
R ?Yo\l&\

/\/\/\/\/‘/\__> ﬂ
Sii S§§ § é<9:'}
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ZK proof of the Hamiltonian path (informal)

T = commi l’m@»&-
2 /‘)Yo\l(/\

/\/\/\/\/\,\__y ﬂ
PACIK:

4@%3

~ K

OPEMJ Copmmitme.)
"“' >
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ZK proof of the Hamiltonian path (informal)

D = commilrmesnl—
2 /‘)Yo\l(/\ ’
* -
/ o
5
5, R ¢
T 2
7 d efo1%
% - /2/3 éi"‘
1
D =opened
C;nm‘}’m:enls

|
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ZK proof of the Hamiltonian path

ZK-Ham protocol

Protocol (V(G), P(G, Vy)), where G = (Vg, E¢) is a directed graph, and Vg = (v1,...,Vn)
is a Hamiltonian path = repeat the following poly()) times:
@ The prover P picks a random permutation 7 on {1,...,n}, let M be the
m-permuted adjacency matrix of G, i.e. M.~y = 1iff (i,j) € E. P sends a
commitment of each entryin M to V.

@ The verifier V picks a random bit b <% {0,1} and sends it to P.

© e ifb =0, Preveals 7 and opens all commitments. V verifies that they
correspond to the m-permuted adjacency matrix of G.
e ifb=1, Psends (w(vy),...,7(vy)) and only opens the commitments
of M of the edges along this path. V verifies if all opening are valid
and open to 1, and if all vertices are different.

\.

(Note: instead of an adjacency matrix, we can also send the list of edges, but we need to
shuffle them so that their position in the [iésot(_l;gysgglﬁgao information on the graph)
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Formally defining ZK proofs

5 Goraaps
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Formally defining ZK proofs
/— 5 Goraaps

@ Covrec kness

" Ever one honesk
= V acceFLS ”

%QW
V \
1
x

g
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Formally defining ZK proofs
ﬁ Gd’zps
s )

@ Covreckness @ SounJHeSS
—_ = - ;
\ K
E\/e.l?jone hanejl\/’ Ha_(lc 1 ovUs ?rl_ov&\ ?
= V aCCeFB Cannol convince V x} x.fuf
x%w
2 ¢Z

B (’”\
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Formally defining ZK proofs

o Couls
e ) >

@ Comeckoess @ Soundness &) 2R knowledge
S - =
W X
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Formally defining ZK proofs

Definition (ZK proof system)

A ZK proof system for a language £ in NP, such that x € £ < 3w, xRw, is defined by
a protocol between an efficient verifier V(x) (outputting either accept or reject) and a
prover P(x,w), such that the protocol is:

e Correct: if 3w, xRw, V(x) always accepts after interacting with P(x, w)

® Soundness: if x ¢ £, V(x) accepts with negligible probability after interacting with
any malicious prover P*(x, w) (if P* is restricted to be efficient, we often refer to
this as an argument system instead of a proof system, but we will not make much
distinction here)

® Zero-Knowledge: For any malicious efficient (if it is not restricted to be efficient,
we refer to it as statistical ZK) verifier V*(x), there exists an efficient probabilistic
algorithm S* (that can depend arbitrarily on V*), called “simulator”, such that for
any xRw, the output of V*(x) interacting with P(x, w) is computationally
indistinguishable from S*(x).

Léo Colisson | 32
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Formally defining ZK proofs

Show that if a protocol is ZK for an NP-complete problem, and if
P # NP, then V* is, in particular, unable to recover the witness.

Léo Colisson | 33
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Formally defining ZK proofs

Show that if a protocol is ZK for an NP-complete problem, and if
P # NP, then V* is, in particular, unable to recover the witness.

Idea: if V*(x) can output the witness w after interacting with P(x, w), then
S*(x) is also a witness (otherwise it is easy to distinguish both distributions by
simply verifying if it is a valid witness). But $*(x) is efficient, which is absurd as
the problem is NP complete, unless P = NP.

Léo Colisson | 33
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ZK proof of the Hamiltonian path

Theorem (ZK-Ham

The ZK protocol for the Hamiltonian path is zero-knowledge.

Proof: for the ZK part the proof needs to “rewind” the prover, details on white board and next
slides. Details can also be found, e.g., in

https://courses.csail.mit.edu/6.857/2018/files/L22-ZK-Boaz.pdf.
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https://courses.csail.mit.edu/6.857/2018/files/L22-ZK-Boaz.pdf

ZK proof of the Hamiltonian path
?\‘5\( cuA oz

aon
Proof of the zero-knowledge:
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ZK proof of the Hamiltonian path

FCM = ilf \/jF be « ME["C‘WA Vﬂ«/«va, and xR w.
Proof of the zero-knowledge: Wanb Fo shoew Fhe HPOS} S"Mv* <\

L w x, z

C’m;
I *
(? ész& ~ S"'M\/*
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ZK proof of the Hamiltonian path

FCM &= cﬂl’ \/'-"F be a amaliccown Vewle, and xR w.

Proofofthe zero- knowledge Wanlk Fo ghow H"@\' A pv} Sm« WAEAS

C,’m.,* /‘T Claim - we can J/me

nm(j_ﬂ Guess daal[&.,f / V?
b <——{'Dl'§
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ZK proof of the Hamiltonian path

~ cﬂlf \/”F be a amaliciown V&«/J,. and 2R w.
Proofofthe zero- knowledge Wank Fo show Fhat o pv} Sim WAEAS

C,’m.,* /‘T Clainm - we can J/me

IM\ (,j_‘ﬂ Guess dﬂa”hf f V?

o b <-—fol"3 Commialy one
b o ?uMJ/e‘L
Prck oo T, s 44.4';“’{’“‘.’/",‘,
( Comm (1), Comm ( gﬂﬂ %
Yo gimulakel \/”€ sbkacn
CL‘Q[[&h b,
L= b G‘,m all Canm.Lm.L'A
. Gobo @) (= newind)™”
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ZK proof of the Hamiltonian path
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ZK proof of the Hamiltonian path

ooy g 2 cﬂ]f V¥ be a omalicionn V&«/M,. and 2R uw.
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ZK proof of the Hamiltonian path
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ZK proof of the Hamiltonian path
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ZK proof of the Hamiltonian path
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ZK proof of the Hamiltonian path
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ZK proof of the Hamiltonian path

- cﬂlf \/;,F b& a_malao«A V&«/Ja and 2R w.
Proofofthe zero- knowledge Wanl Fo show Fhal F pely Simm p ¥

aco| = 42‘”"\(6 5““3
C”"""’ Cladm 2 im\('.[we reave~ P8
(om Ml’ ML"’M
A by 4.
INEEs /

’ gug challes, vx

M(aﬂ ) {‘“/ Pick aombom T snd 4

@ b <_,{‘Dl3 &%ﬁ’:‘;dﬁlkj one (Comm (’T)l Comm ( ' “ )3
A

g f=o: uMJ’eL
Prck aomdom T, sed wl,;“?“”’w
(Comm ("ﬂ’) Comm (Gvn %
to glmlqueé \/’F abkzu]
CL‘Q[[&h b )

L= b G‘,m all Canm.Lm.L'A
: Gobo @) (= newind)®"”

£d Colisson | 35

to Srmla.[’eé \/“‘ ,,Iol'am/l
challen ,
&é‘e\o b Gpem /Lamlaw\ Hom. f"”‘
Goi"o @ (= AE-WIV)CL)
ackan, ovlpul V¥




blenderpoint
{"type": "addMe"}


ZK proof of the Hamiltonian path
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ZK proof of the Hamiltonian path
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ZK proof of the Hamiltonian path
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ZK proof of the Hamiltonian path
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ZK proof of the Hamiltonian path
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ZK proof of the Hamiltonian path
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ZK proof of the Hamiltonian path
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ZK proof of the Hamiltonian path
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ZK proof of the Hamiltonian path
Shytly eatin oo,

Proof of the soundness: /’) brove %'SM“SS of 4 Ui assumity slebshied lm;'?

Léo Colisson | 36



blenderpoint
{"type": "addMe"}


ZK proof of the Hamiltonian path
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ZK proof of the Hamiltonian path
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ZK proof of the Hamiltonian path
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ZK proof of the Hamiltonian path
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ZK proof of the Hamiltonian path
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ZK proof of the Hamiltonian path

Proof of the soundness: /l) Ceove g - Souduess of 4 Aund assumivq S@k‘(@? la».i;

C Vnm&‘c\({m: aSSuine Non.SMA- Then 3T, amd a mom - HW‘(\/""“‘“’"\
o G sV BT L oud P¥ "f'ﬁwx
a SV, iz 7 6)/ 6)> = 1L ) —
7or G s g < g

& X
vt WLOé’/ we Can asSSeme H"!l’ (Pa GW\A /P,,
\/ ® e deleyminishic. (fuke max over Aamdomness) .

S, Sl’ﬂa'/(f? o% ?Kfé):z .C@o;;:h%{‘}fnﬁf{;

° 6?*”4_ 'Sw&'f«.i’ when v-1

Bj JeJ f 23(?&_%03 fw:"j) S ince VI* s

Aﬂ-k&nwn;,,;s)','c) “'ueqa,l%mé a, -éfa,l}, Since e) iL , we Lv( a,=a, = /.{—, e V,zlw?d Qccepl'-
Comm is SMU/ bm&fy -> e ‘} Gpom, om Cpen, have s donbica) Dpem’% r“{”ri«\
2"4_‘,.—““ « Gpom, amd 6;:1/«4_ have = ape[gg\t'lggﬁ — Rhsand ( commiViment ;s binding ) G shab-bindey



blenderpoint
{"type": "addMe"}


ZK proof of the Hamiltonian path
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Proof of knowledge

How can we be sure that the prover “knows” the secret?

E.g.: Fory € Z;, I can convince you that there exists x such that g* =y (e.g. g
is a generator of Zy, i.e. for all x dividing p — 1, g* # 1), but I may not always
know x (hardness of discrete log).

proof of membership # proof of knowledge

How to define this notion formally?

Léo Colisson | 37
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Proof of knowledge
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Proof of knowledge
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Proof of knowledge
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Proof of knowledge

Definition (ZKPoK)

A ZK protocol for alanguage in NP (with relation R) is said to be a proof of
knowledge (ZKPoK) (with error x(\)) if there exists an efficient algorithm
& given rewindable oracle access to P, called an extractor, such that for

any x and prover P*, if Pr[(P*(x), V(X)) = T] > &(|x]), £ (x) returns a
poly(\) (x|)

valid witness w (xRw) in time B[P 00,V 00V =T T=A(D

Why isn't it contradicting the ZK property?

Léo Colisson | 39
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Proof of knowledge

Definition (ZKPoK)

A ZK protocol for alanguage in NP (with relation R) is said to be a proof of
knowledge (ZKPoK) (with error x(\)) if there exists an efficient algorithm
& given rewindable oracle access to P, called an extractor, such that for
any x and prover P*, if Pr[(P*(x), V(X)) = T] > &(|x]), £ (x) returns a

valid witness w (XRw) in time g (P*()E))c,)‘l;((;\)))(fp]fm(|x|) /k_;f\/r,m!y be s Yuivia

Why isn't it contradicting the ZK property?

Léo Colisson | 39

Wa.'!/rj p’)an[é-j YK
77—

= =

Ny~
~—



blenderpoint
{"type": "addMe"}


Proof of knowledge

Definition (ZKPoK)

A ZK protocol for alanguage in NP (with relation R) is said to be a proof of

knowledge (ZKPoK) (with error x(\)) if there exists an efficient algorithm

& given rewindable oracle access to P, called an extractor, such that for

any x and prover P*, if Pr[(P*(x), V(X)) = T] > &(|x]), £ (x) returns a
poly(\)(|x]) \\/\/r,'cqe/ be s ¥ Yuivia

= =

valid witness w (XRw) in time BTV =TT RRD

Wa.'!/rj p’)an[é-j YK

(24
q q 8 nf @7 I} We canm do much
Why isn't it contradicting the ZK property? bete = we find w ]

EREN
~—

<]

Léo Colisson | 39



blenderpoint
{"type": "addMe"}


Proof of knowledge

Definition (ZKPoK)

A ZK protocol for alanguage in NP (with relation R) is said to be a proof of
knowledge (ZKPoK) (with error x(\)) if there exists an efficient algorithm
& given rewindable oracle access to P, called an extractor, such that for

any x and prover P*, if Pr[(P*(x),V(x)) = T] > &(|x]), £’ (x) returns a
poly(M) (1x])

valid witness w (xRw) in time B[00,V (V=T T=~ (X))

Why isn’t it contradicting the ZK property?
The extractor can rewind P* etc
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ZK proof of the Hamiltonian path

Theorem (ZK-Ham

The ZK protocol for the Hamiltonian path is a zero-knowledge proof of
knowledge.

Proof idea: the extractor plays the protocol honestly with b = 0, rewinds P*, and then sends
b = 1. This way it gets both a Hamiltonian path and =, so it can revert = on the Hamiltonian
path to recover a Hamiltonian path on G.

When sending 2 challenges is enough to recover the witness = called special soundness

Léo Colisson | 40
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Reducing interactivity
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Parallel repetition

For efficiency, tempting to repeat the ZK protocol for Hamiltonian path in
parallel instead of sequentially.

© Wrong in general: there exist ZK protocols secure when composed
sequentially, but not in parallel [Feige, Shamir STOC 90] (see next slide)

® Unknown for the protocol for Hamiltonian paths

© Known for this protocol if the challenges of the verifier are random
(semi-honest verifier) = Fiat-shamir’s construction has this property!

Léo Colisson | 42
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Parallel repetition

Theorem 3.2: There exists a zero knowledge Can you prove that this scheme is NOT

proof of knowledge system (P,V) for the discrete log, Zero-KnowIedge when Composed in
w.hich when execut;ed twice in patallel discloses the paraIIeI twice?
discrete log of the input.
Proof(sketch): Let (P, V) be any zero knowledge
proof of knowledge system for the discrete log prob-
lem (e.g. sce [20]). We construct (P,V) directly from
(P,V).

1. On input (p,9,2), V tries to randomly guess w,
the unique discrete log of z, satisfying g% = =
mod p. If V succeeds (with negligible probabil-
ity), he sends 1. Otherwise he sends 0.

¥

. If V sent 1 in move 1, he now proves to P in zero
knowledge that he knows w, using the protocol
(P, V) with reversed roles. If P is convinced by
V’s proof (this is expected to happen with over-
whelming probability with truthful P and V), he
sends w to V, showing that he too knows w, and
V accepts. If P is not convineed by V’s proof, P
stops and V rejects.

3. If V sent 0 in move 1, P proves his knowledge of
w using the standard proof system (P, V).
Léo Colisson | 43
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Parallel repetition

Theorem 3.2: There exists a zero knowledge
proof of knowledge system (P,V) for the discrete log,
which when executed twice in parallel discloses the
discrete log of the input.

Proof(sketch): Let (P, V) be any zero knowledge
proof of knowledge system for the discrete log prob-
lem (e.g. sce [20]). We construct (P,V) directly from
(P,V).

1. On input (p,9,2), V tries to randomly guess w,
the unique discrete log of z, satisfying g% = =
mod p. If V succeeds (with negligible probabil-
ity), he sends 1. Otherwise he sends 0.

¥

. If V sent 1 in move 1, he now proves to P in zero
knowledge that he knows w, using the protocol
(P, V) with reversed roles. If P is convinced by
V’s proof (this is expected to happen with over-
whelming probability with truthful P and V), he
sends w to V, showing that he too knows w, and
V accepts. If P is not convineed by V’s proof, P
stops and V rejects.

3. If V sent 0 in move 1, P proves his knowledge of
w using the standard proof system (P, V).

Léo Colisson | 4

Can you prove that this scheme is NOT

Zero-Knowledge when composed in
parallel twice?

The protocol (P,V) is a complete and sound (per-
fect) zero knowledge proof of knowledge.

Consider now two executions, (P, V) and (P, V)
in parallel. A cheatmg verifier V can always extract
w from Py and P; using the following strategy: In
move 1, V sends 0 to P, and 1 to P;. Now V has to
execute the protocol (P, V) twice: Once as a verifier
talking to the prover Py, and once as a prover talking
to the verifier Py. This he does by serving as an inter-
mediary between P) and Pg, sending . Py’s messages to
Py, and P,’s messages to P;. Now P, willfully sends
wtoV. o

Remark 1: Assuming the intractability of the dis-
crete log, Theorem 3.2 proves that zero knowledge is
not preserved under parallel composition.

Remark 2: We emphasize the importance of the
fact that z has a unigue witness w. Otherwise a single
execution of the protocol (P,V) would not be zero
knowledge, as it might reveal which of the witnesses
for = P is using. This fact cannot be deduced by a

fimulator M just by observing z and V.
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Sigma protocol
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Sigma protocol
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How to make the protocol non-interactive (NIZK): Fiat-Shamir transform
© Run the protocol in parallel
® Replace the challenge with the hash of all commitments of first phase

- IAT- SHANZIR:

Léo Colisson | 45
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7 Is it still secure if we hash the challenges one by one?
®
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Fiat Shamir

How to prove security of the Fiat Shamir transform?

Léo Colisson | 47
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Fiat Shamir

C{auym . Jmpess ible

: : : 5
How to prove security of the Fiat Shamir transform? Con p(m'“ oode])
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Fiat Shamir

C{auym J rmposs ibe

. , . 5
How to prove security of the Fiat Shamir transform? (ion plesi mode])

Inthe nown- .'r\\/CVacln've Ceee : @f—»
T/L
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Fiat Shamir

C{auym J rmposs ibe

. , . 5
How to prove security of the Fiat Shamir transform? (ion plesi mode])

Inthe nown- .'r\\/(Vacln've Ceee : @f—»
x T/L

= Z2k-406 ) &5 )Bj
?

Care d feliccovs V¥
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Fiat Shamir

C{au'rm . Jopmpess e

: , : 5
How to prove security of the Fiat Shamir transform (o P("“'“ omode])

Inthe nown- m\/CVarclnve Ceene : @,_»
;r_é.f

= 2Zk=- 40 / ﬁj
C‘:::(L' ;pf?:llqu$ V*
“EFelod
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Fiat Shamir

C/au'rm . Jopmpess e

: , : 5
How to prove security of the Fiat Shamir transform (o P("“'“ omode])

Inthe non-inVeyvachive ceoe: @f—»
= ZK_EG/ {ﬂ
Cenki el G

CW i} feliccovs V*

e. 6" k Se @_ﬂ}j o~ ’

‘l’(—- corvefl, psc
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Fiat Shamir

C/au'rm . Jopmpess e

: , : 5
How to prove security of the Fiat Shamir transform (o P("“'“ omode])

In the nown- m\/CVac[nVe Ceene : @,_»
=> ZK_EG/ {ﬂ
Canbi Cocfan

CW i} feliccovs V*

e. 6" k Se @_ﬂ}j o~ ’

‘l’(—- corvefl, psc

> Sosnliass (jj @

I Soumdngs
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Fiat Shamir

Clacm: Trpess ibe

. ) . ,
How to prove security of the Fiat Sham|£ transforms? Con P(mlw o))

Inthe nown- .'r\\/CVarc[n've Ceee : @f—»
T/L

~ &k 30/ ]
(’a«lﬂ j’of?ﬂ,ms V*/\

ﬂ . (‘}1:7

‘l’(—- ot

¥
=> Souméues‘s)d? Z ‘ @.‘n Pmb.a.,pm-} P = G we have

e S’Mluj

R
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Fiat Shamir

Clacm: Trpess ibe

. ) . ,
How to prove security of the Fiat Sham|£ transforms? Con P(mlw o))

Inthe nown- .'r\\/CVarc[n've Ceee : @f—»
gﬂ_é.ﬁ

% /L
= Zk- 306/ M 5
C?:‘L'C‘;JJ’Z"%vsv*/ ( GJ
" :(f | = (”}Ej

‘l’(—-mv
¥
=> Souméues‘s)d? Z ‘ @.‘n Pmb.a.,pm-} P = G we have

L& Soumdugs \’E’?@
L
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Fiat Shamir

Clacm: Trpess ibe

. ) . ,
How to prove security of the Fiat Sham|£ transforms? Con P(mlw o))

Inthe nown- .'r\\/CVarc[n've Ceee : @f—»
gﬂ_é.ﬁ

% /L
= Zk- 306/ M 5
C?:‘L'C‘;JJ’Z"%vsv*/ ( GJ
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Fiat Shamir

How to prove security of the Fiat Shamir transform?
Solutions:

e Consider the Random Oracle Model
e The simulator can reprogram the oracle

cLa.”&w}l

6’

e (f/( namAOM Cl\é qo/]’gy‘
. gwmye Camm:\(vmemlfs Comm aﬁfmy d«uzﬂ@g/s w,-” bc clt

0 lﬁecozaﬂhl F( (CQMM\ I= C_\/L [ﬂ

. Gp&w\ Like IJ, Llﬂql/lﬁjw = Ck'to.l[:'(ap@*\ch
(Camn—-, Gp&"ch) _— \/
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Universal Efficient Simplicity Post-quantum

Hamiltonian path v X X v
Specialized approaches X v Y v Depends
ZK-SNARK v v X
v X

ZK-STARK v

X X
X v
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Hav ¥ REDUCTFONS
(" KARP REDUCTIONS”)

P —> SAT = Ham,

Universal Efficignt Simplicity Post-quantum

Hamiltonian path v X v
Specialized approaches X v Y v Depends
ZK-SNARK v v XX X
ZK-STARK v v XX Y
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Hav ¥ REDUCTFONS
(" KARP REDUCTIONS”)

P —> SAT = Ham,

Universal Efficignt Simplicity Post-quantum

Hamiltonian path v X v
Specialized approaches X v Y v Depends
ZK-SNARK v v XX X
ZK-STARK v v XX Y

> CF CoURSE VAVNESSA
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More efficient authentication &
signature protocols
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Zero-Knowledge proofs for discrete logarithm (DL)

Specialized solution: I know x such that g* =y (operations in Zy or arbitrary

cyclic group G).

ZK for the discrete logarithm (DL)

Alice(p, g.y,X) Bob(p.g.y)
r&z R=¢g

b b & {0,1}
S:=(r+bx) mod (p-1) S

return g° = Ry?

Prove the correctness.

Léo Colisson | 51
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Zero-Knowledge proofs for discrete logarithm (DL)

Specialized solution: I know x such that g* =y (operations in Zy or arbitrary

cyclic group G).

ZK for the discrete logarithm (DL)

Alice(p, g.y,X) Bob(p,g.y)
r&z R=¢g
b $
[gpfl = 1 (Fermat’s little thm) b © {07 1}
S:=(r+bx) mod (p-1) S

return g° = Ry?

Prove the correctness.
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Zero-Knowledge proofs for discrete logarithm (DL)

Specialized solution: I know x such that g* =y (operations in Zy or arbitrary

cyclic group G).

ZK for the discrete logarithm (DL)

Alice(p,g,y, x)

Bob(p, g.y)
ré&z, R=g
b $
[gp*1 = 1 (Fermat’s little thm) b < {07 1}
S:=(r+bx) mod (p-1) &

>

return g° = Ry?

Prove the correctness.
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Zero-Knowledge proofs for discrete logarithm (DL)

. ? :’Dn'}ml’g [y
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Zero-Knowledge proofs for discrete logarithm (DL)
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Zero-Knowledge proofs for discrete logarithm (DL)
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Zero-Knowledge proofs for discrete logarithm (DL)

Léo Colisson | 52



blenderpoint
{"type": "addMe"}


Zero-Knowledge proofs for discrete logarithm (DL)

Prove that this protocol is:

7 * ZK

° * sound
¢ special sound
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Schnorr signature

Problem of the above protocol: need n rounds to have security ;. Not very
efficient.

Schnorr signature = 1 round without (quite inneficient) Fiat Shamir!

= Idea: more than 2 challenges.

Léo Colisson | 54
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Schnorr signature

Kept by some trusted authority, g¥ =y
Schnorr authentication

Alice(p, g.y, X)

Bob(p.g.y)
ré&z, R=g
¢ c& 7y
S:=(r+c¢x) mod (p—1) 0

return ??? =777

Find the verification procedure.
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Schnorr signature

Kept by some trusted authority, g¥ =y
Schnorr authentication

Alice(p, g.y,X) Bob(p, 8.y)
ré&z, R=g

¢ cé& 7y
S:=(r+c¢x) mod (p—1) o

return g° < Ry°

Find the verification procedure.
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Schnorr signature

This allows someone to check if we interact with Alice, but two issues:
e this is interactive
* not a signature for now

= Solution: Fiat-Shamir (one round) where the hash is based on the message
to sign and commit.
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Schnorr signature

Schnorr signature

Let H: G x {0,1}* — Zj be a hash function, m a message to sign and
y = g¥ such that x is kept secret by Alice, and y is public.

Alice(p,g,y,x,m) Bob(p,g,y,m)
ré&z,

R=g"
c:=H(R,m)

S:=(r+cx) mod (p—-1) (R,s)

return g° = hy#®m
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Schnorr signature

Schnorr’s signature is used in real life, e.g. in the Bitcoin protocol (group:
secp256k1 elliptic curve) to replace ECDSA:

* Provably secure: strongly unforgeable under chosen message attack
(SUF-CMA) in the ROM assuming hardness of DL

e Can be generalized to sign a message collaboratively exploiting
linearity

https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
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https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

Goldreich-Levin construction
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Goldreich-Levin

Earlier: how to obtain bit commitment from one-way permutations:
e f:{0,1}* —» {0,1}*
e p:{0,1}* — {0,1} hard-core predicate
(hard to guess p(x) given f(x), exists thanks to the Goldreich-Levin
theorem)
* xec{0,1}
Commit(x,r) = (f(r), p(r) &X), Open((y,b),X,T) = ((v,b) = (f(r), p(r) & x))
(permutation needed for (statistical) binding, otherwise we need something
like collision resistance)

Léo Colisson | 60
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Goldreich-Levin

Haqd Yo invea V 7~ Mrlhr'rma,p a}smfha'\

e

G W |
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Goldreich-Levin

Ha,\& Yo (nvea \/

e

G -

[9 /\Jb Seme \Oiys mae not be Seazl's:
- -

. = b (| SHACx)
g.g. f(\au x)
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Goldreich-Levin

HGAA Yo (nvea V

e

G -

> %b: Seme bits ma nol' be Secwels:
=
Eg f{\au x)= bl SHA(x)

j(b!lac) Peaks b bulis owF
= vad commlomed scheme
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Goldreich-Levin

We camn hide ome bV

Ha.d Yo (nvea V

4 GL : 4
H‘léi‘y“ FUV'CJ\'OM

O

[9 b: Seme bivs wma nol' be Secwels:
=
Eg J(\all x) = bl SHA(x)

jfbnx) Doaks b bubis OWF
= vad commlomed scheme
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Goldreich-Levin

Haqd Yo |'nV&\‘/ We camn LAAz one Jm‘f

v GL /

N (L, Conction
.

[9 b Seme biYs ma not be Secwels
= ;
Eg f(\”ll )= bl SHA(x)

Jpna0) Doaks b bubis OWF

Hofe P«za‘s
= ha dcorve bit
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Goldreich-Levin
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Goldreich-Levin

Theorem (Goldreich-Levin)

Let f be an arbitrary one-way function, and let f'(x,r) := (f(x),r) where
|x| = |r|. Let p(x,T) == ®;(x;r;). Then p is a hardcore predicate for f”.

Proof sketch: By contradiction: For simplicity, assume there exists A(f’(x)) that always
guesses g(x) correctly. Then, we can use A to invert f

Show how A can be used to recover x from y := f(x).
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Goldreich-Levin

Theorem (Goldreich-Levin)

Let f be an arbitrary one-way function, and let f'(x,r) := (f(x),r) where
|x| = |r|. Let p(x,T) == ®;(x;r;). Then p is a hardcore predicate for f”.

Proof sketch: By contradiction: For simplicity, assume there exists A(f’(x)) that always
guesses g(x) correctly. Then, we can use A to invert f

Show how A can be used to recover x from y := f(x).
We can recover x bit-by-bit:

© Firstbitis A(y,10...0) =g(x,10...0) =x3 x 1+ X3 x 0+ ... Xn x 0 = X3
@ Second bit is A(y,010...0), ...
e ..

@ Last bitis A(y,0...01) O
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Goldreich Levin

Full proof: see Foundation of Cryptography, Volume 1, Oded Goldreich.
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