
Advanced Crypto 2024
Zero-Knowledge Proofs

Léo Colisson Palais

leo.colisson-palais@univ-grenoble-alpes.fr
https://leo.colisson.me/teaching.html

blenderpoint
{"type": "addMe"}

mailto:leo.colisson-palais@univ-grenoble-alpes.fr
https://leo.colisson.me/teaching.html

Zero-knowledge

Zero-Knowledge (ZK) Proof = prove a statement without revealing anything
beyond the fact that the statement is true.

Léo Colisson | 2

blenderpoint
{"type": "addMe"}

Applications ZK

Many applications:
• Authentication: “I know a secret x such that SHA3(x) = y”
• Privacy-preserving blockchain: “I can prove that this transaction is valid

without revealing the sender, receiver, nor the amount of the transaction”
(ZCash, see also smart contracts)
• Multi-party computing: “This circuit is an honesty-prepared garbled

circuit, but I won’t reveal the keys of the circuit”
• Sensitive data: Say that the hash of your DNA (or medical record. . .) is

signed by a trusted authority. Then you can prove to any insurance that
you do not have a given genetic disorder without revealing your full DNA.
Also works to prove that your salary is greater/lower than XXX without
revealing it etc (needed by banks, housing allowance. . .).

Léo Colisson | 3

blenderpoint
{"type": "addMe"}

blenderpoint
{"type": "insertVideo","folder": "Video_bank/","filename": "Teaching/Zero_knowledge_proofs/zk_with_sudoku.mp4","stops": "0, 6, 10, 13, 60, 143, 222, 307, 425, 510, 518, 524, 537","nbFrames": "539","firstFrame": "","lastFrame": "","speed": ""}

Issues

Still many questions:
• Sudoku are nice, but what else?
• How to replace physical cards?
• Can we make it fully non-interactive?
• Can we make the verification, e.g., logarithmic time?

Léo Colisson | 4

blenderpoint
{"type": "addMe"}

ZK proofs for NP

blenderpoint
{"type": "addMe"}

NP

Definition (NP reminder)

A language L ⊆ {0,1}∗ is said to be in the NP (nondeterministic poly-
nomial time) class if there exists an efficient (polynomial time) Turing
machine V such that x ∈ L iff there exists a witness wx such that
V(x,wx) = 1 (we may write xRwx).

I.e. a problem is in NP if it is easy to verify a solution.

Léo Colisson | 6

blenderpoint
{"type": "addMe"}

NP

Examples of NP problems:
• The language of Sudoku (of arbitrary size) with a solution is in NP:

2 6

1 7

3 1 6

6 5 8 3

9 2 6 1 7

5 4 8 6

8 4 3

4 8

9 4

⇒

1 2 6 5 7 8 4 3 9

4 8 5 9 3 2 1 7 6

7 9 3 1 4 6 5 8 2

2 6 1 4 5 7 8 9 3

8 3 9 2 6 1 7 5 4

5 7 4 3 8 9 2 6 1

6 5 2 8 9 4 3 1 7

9 4 8 7 1 3 6 2 5

3 1 7 6 2 5 9 4 8

(easy to verify)

• 3-SAT

⇒ NP-complete

• Graph coloring

⇒ NP-complete

• Hamiltonian path

⇒ NP-complete

Léo Colisson | 7

blenderpoint
{"type": "addMe"}

NP

Examples of NP problems:
• The language of Sudoku (of arbitrary size) with a solution is in NP:

2 6

1 7

3 1 6

6 5 8 3

9 2 6 1 7

5 4 8 6

8 4 3

4 8

9 4

⇒

1 2 6 5 7 8 4 3 9

4 8 5 9 3 2 1 7 6

7 9 3 1 4 6 5 8 2

2 6 1 4 5 7 8 9 3

8 3 9 2 6 1 7 5 4

5 7 4 3 8 9 2 6 1

6 5 2 8 9 4 3 1 7

9 4 8 7 1 3 6 2 5

3 1 7 6 2 5 9 4 8

(easy to verify)

• 3-SAT⇒ NP-complete
• Graph coloring⇒ NP-complete
• Hamiltonian path⇒ NP-complete

Léo Colisson | 7

blenderpoint
{"type": "addMe"}

NP

Definition (NP complete)

A language L is NP complete if given access to an oracle O(x) := x ∈ L,
one can efficiently tell if x′ ∈ L′ for any NP language L′ and word x′.

Léo Colisson | 8

blenderpoint
{"type": "addMe"}

ZK for NP

Theorem (informal)

For any NP language L, there exists a zero-knowledge protocol to prove
that a given word x belongs to L. Notably, no information on the witness
wx is leaked to the prover.

Proof strategy:
L SAT Hamiltonian path ZK for Hamiltonian path

Léo Colisson | 9

blenderpoint
{"type": "addMe"}

ZK for NP, step 1: L to SAT

Definition (SAT)

A SAT (Boolean satisfiability) instance is defined by a conjunction of
clauses, where each clause is the disjunction of multiple literals (a
boolean variable or the negation of a boolean variable).
A SAT instance is said to be satisfiable if there exists an assignment mak-
ing the final formula true.

E.g.:
• (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (a ∨ ¬d)
• (a ∨ ¬b ∨ ¬c) ∧ (a ∨ b ∨ c) ∧ (b ∨ ¬c)

Léo Colisson | 10

blenderpoint
{"type": "addMe"}

ZK for NP, step 1: L to SAT

First step: reduce L to a SAT instance (possible: SAT is NP complete and L is in
NP). How?
⇒ Tseytin transformation:
• x is public, so we can consider the boolean circuit of the function
f (w) := V(x,w)

• Add a new variable for each wire in the circuit of f (need to add new
variables to avoid exponential increase in the number of clauses)
• For each gate g in the circuit of f , add new clauses to constraint the

variable of the output wire o to be such that o = g(i1, . . . , in) where
i1, . . . , in are the variable of the input wires of g. How to find the clauses?

Léo Colisson | 11

blenderpoint
{"type": "addMe"}

ZK for NP, step 1: L to SAT

How to find the clauses to constraint o = g(i1, . . . , in)?
1 Method 1:

• Rewrite o⇔ g(i1, . . . , in) as a boolean formula ϕ involving only ∧, ∨ and ¬,
using the fact that a⇒ b iff b ∨ ¬a.

• Express ¬ϕ as a disjunctive normal form, using first the Morgan laws
(¬(A ∨ B) = (¬A) ∧ (¬B) and ¬(A ∧ B) = (¬A) ∨ (¬B)) to “push down” the
negations, then distributivity laws ((A ∨ B) ∧ C = (A ∧ C) ∨ (B ∧ C)) to “push
down” the conjunction.

• Compute again the negation of ¬ϕ to recover ϕ (since ¬¬ϕ = ϕ) using
Morgan laws and simplification of double negation to get the conjunctive
normal form of ϕ

Léo Colisson | 12

blenderpoint
{"type": "addMe"}

ZK for NP, step 1: L to SAT

E.g. for c = a ∧ b (we denote ¬a as a, ∧ as multiplication and ∨ as addition since distributivity is
easier to see with this notation):

ϕ = (c⇔ ab) = (c⇒ ab)(ab⇒ c) = (ab+ c)(c+ ab)

ϕ = (ab+ c)(c+ ab) = ab+ c+ c+ ab = abc+ cab = (a+ b)c+ cab = ac+ bc+ cab

ϕ = ϕ = ac+ bc+ cab = (ac)(bc)(cab) = (a+ c)(b+ c)(c+ a+ b) = (a+ c)(b+ c)(c+ a+ b)

Hence we add the clauses (a ∨ ¬c) ∧ (b ∨ ¬c) ∧ (c ∨ ¬a ∨ ¬b)

Similarly, for an OR gate: (a ∨ b ∨ c) ∧ (a ∨ c) ∧ (b ∨ c)

Léo Colisson | 13

blenderpoint
{"type": "addMe"}

ZK for NP, step 1: L to SAT

How to find the clauses to constraint o = g(i1, . . . , in)?
2 Method 2:

• Write the truth table of o⇔ g(i1, . . . , in)
• Remark that the expression is true only if we are not in each line where the

truth table is wrong: this directly gives a CNF by putting one clause per such
line, where the literals are the negation of the assignments of this line.

E.g. for c = a ∧ b:
a b c Truth value Clauses to add
0 0 0 1
0 0 1 0 a ∨ b ∨ ¬c
0 1 0 1
0 1 1 0 a ∨ ¬b ∨ ¬c
1 0 0 1
1 0 1 0 ¬a ∨ b ∨ ¬c
1 1 0 0 ¬a ∨ ¬b ∨ c
1 1 1 1

(maybe not optimal, see also Karnaugh map)

Léo Colisson | 14

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Issue with SAT: no good way to do ZK directly on SAT.
⇒ Turn SAT to Hamiltonian path!

Léo Colisson | 15

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Definition (Hamiltonian path)

A Hamiltonian path in a directed graph G = (V ,E) is a path P = (v1, . . . , vn) where
n = |V |, i.e. a list of nodes such that for any i, (vi, vi+1) ∈ E, that visits all vertices in V
exactly once (i.e. for all i ̸= i′, vi ̸= vi′). The decision version of the problem is to determine
if there exists such a path.

?
Which graph(s) admit(s) an Hamiltonian path?

A None
B First one
C Second one
D Both

Léo Colisson | 16

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Definition (Hamiltonian path)

A Hamiltonian path in a directed graph G = (V ,E) is a path P = (v1, . . . , vn) where
n = |V |, i.e. a list of nodes such that for any i, (vi, vi+1) ∈ E, that visits all vertices in V
exactly once (i.e. for all i ̸= i′, vi ̸= vi′). The decision version of the problem is to determine
if there exists such a path.

?
Which graph(s) admit(s) an Hamiltonian path?

A None
B First one

C Second one
D Both

Léo Colisson | 16

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Theorem (Hamiltonian path is NP-complete)

For any SAT instance S, one can build in polynomial time a graph GS that
admits a Hamiltonian path iff S is satisfiable.

Instead of proving that a SAT instance is satisfiable, we can prove that a graph
has a Hamiltonian path!

Léo Colisson | 17

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Step 1 construction: for each variable x, we create a diamond as follows, where the middle
pattern repeats j times, where j is the number of clauses in S involving x:

first clause second clause

?
How many Hamiltonian paths can you find in this graph?

A 0
B 1
C 2
D 3 or more

Léo Colisson | 18

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Step 1 construction: for each variable x, we create a diamond as follows, where the middle
pattern repeats j times, where j is the number of clauses in S involving x:

first clause second clause

?
How many Hamiltonian paths can you find in this graph?

A 0
B 1
C 2

D 3 or more

Léo Colisson | 18

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Step 2 construction: we connect the diamonds as a chain (order does not
matter)

?
How many Hamiltonian paths can you find
in this graph (suppose S has n variables)?

A 0
B n
C 2n

D Other

Léo Colisson | 19

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Step 2 construction: we connect the diamonds as a chain (order does not
matter)

?
How many Hamiltonian paths can you find
in this graph (suppose S has n variables)?

A 0
B n
C 2n

D Other

Léo Colisson | 19

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Last step construction: we add one node nc per clause c, and for each variable x in c, we add
two edges from this node to the two nodes a and b (a being to the left of b) of a free blue block
in the diamond of x, where the direction is a→ nc → b if the variable appears positively in the
clause, and b→ nc → a if the negation of x is in the clause.

?
What is the formula encoded by the graph on the
left?

A (¬a ∨ ¬b) ∧ (a)
B (a ∨ ¬b) ∧ (¬a)
C (a ∨ ¬b) ∧ (¬a ∨ ¬b)
D (a ∨ ¬b) ∧ (¬c)
E (a ∧ ¬b) ∨ (¬a)

Léo Colisson | 20

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Last step construction: we add one node nc per clause c, and for each variable x in c, we add
two edges from this node to the two nodes a and b (a being to the left of b) of a free blue block
in the diamond of x, where the direction is a→ nc → b if the variable appears positively in the
clause, and b→ nc → a if the negation of x is in the clause.

?
What is the formula encoded by the graph on the
left?

A (¬a ∨ ¬b) ∧ (a)

B (a ∨ ¬b) ∧ (¬a)

C (a ∨ ¬b) ∧ (¬a ∨ ¬b)
D (a ∨ ¬b) ∧ (¬c)
E (a ∧ ¬b) ∨ (¬a)

Léo Colisson | 20

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Claim

The resulting graph admits a Hamiltonian path iff S is
satisfiable.

Proof skech:
⇐: quite easy
⇒: bit more technical: we must prove that all Hamiltonian
paths have a “normal” form, i.e.:
• it visits the variables in order,
• all nodes of the variable are visited in a “Z” shape (two

possible directions = interpret as true or false),
• if we leave one node in a blue box to a clause node, the

next step is on the other node in the same blue box,
(Demonstration on board)

Léo Colisson | 21

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

NB: important to keep the “separation nodes” between the blue boxes! Otherwise possible
to find weird paths visiting the nodes in different directions:

Léo Colisson | 22

blenderpoint
{"type": "addMe"}

Commitment

What is the cryptographic equivalent of the “cards” used in the sudoku game?

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

Commitment

What is the cryptographic equivalent of the “cards” used in the sudoku game?
⇒ commitments!

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

Commitments

Definition (Commitment)

Let Commit(x, r),Open(c, x, r) be two probabilistic algorithms (implicitly depending on
a security parameter λ). They are said to be a commitment if it is:
• Correct: for any x and r, Open(Commit(x, r), x, r) = ⊤
• Hiding: “Commitments reveal no info on x”

For any x, x′, and adversary A,∣∣∣∣∣Pr r $←{0,1}λ
c←Commit(x,r)

[A(c) = 1]− Pr r $←{0,1}λ
c←Commit(x′,r)

[A(c) = 1]
∣∣∣∣∣ ≤ negl(λ)

• Binding: “Hard to open to two different values”
For any adversary A,
Pr(c,x,r,x′,r′)←A(1λ) [Open(c, x, r) = Open(c, x′, r′) = ⊤ ∧ x ̸= x′] ≤ negl(λ)

Léo Colisson | 24

blenderpoint
{"type": "addMe"}

Commitments

How to obtain commitments?
• Method 1: Random Oracle model:

Commit(x, r) = H(r∥x), Open(c, x, r) = (c ?
= H(r∥x))

• Method 2: One-way permutations (bit commitment):
• f : {0,1}∗ → {0,1}∗
• p : {0,1}∗ → {0,1} hard-core predicate

(hard to guess p(x) given f (x), exists thanks to the Goldreich-Levin theorem)
• x ∈ {0,1}

Commit(x, r) = (f (r),p(r)⊕ x), Open((y,b), x, r) = ((y,b) ?
= (f (r),p(r)⊕ x))

(permutation needed for (statistical) binding, otherwise we need
something like collision resistance)

Léo Colisson | 25

blenderpoint
{"type": "addMe"}

Commitments

How to obtain commitments?
• Method 3: PRG (exists from one-way functions)

• G : {0,1}∗ → {0,1}∗, such that ∀s, |G(s)| = 3|s|
• We assume that the receiver sent a random r0 $← {0,1}3n before the commit

phase
• x ∈ {0,1}

Commit(x, r) = G(r)⊕ (xr0), Open(c, x, r) = (G(r)⊕ (xr0)
?
= c)

Léo Colisson | 26

blenderpoint
{"type": "addMe"}

Commitments

There exists no statistically hiding and statistically binding commitment
scheme, but there exists both:
• statistical hiding + computational binding (many-to-one hash function)

• computational hiding + statistical binding (injective hash function)

Léo Colisson | 27

blenderpoint
{"type": "addMe"}

ZK for NP, step 3: ZK for Hamiltonian path

Claim (ZK for Hamiltonian path, informal)

For any graph G, it is possible to prove that we know a Hamiltonian path
for G without revealing anything about this path.

? Can you find how, based on the Sudoku example?

Léo Colisson | 28

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path (informal)

Léo Colisson | 29

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path (informal)

Léo Colisson | 29

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path (informal)

Léo Colisson | 29

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path (informal)

Léo Colisson | 29

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path (informal)

Léo Colisson | 29

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path (informal)

Léo Colisson | 29

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

ZK-Ham protocol

Protocol (V(G),P(G,VH)), where G = (VG,EG) is a directed graph, and VH = (v1, . . . , vn)
is a Hamiltonian path = repeat the following poly(λ) times:

1 The prover P picks a random permutation π on {1, . . . ,n}, let M be the
π-permuted adjacency matrix of G, i.e. M(π(i),π(j)) = 1 iff (i, j) ∈ E. P sends a
commitment of each entry in M to V .

2 The verifier V picks a random bit b $← {0, 1} and sends it to P.
3 • if b = 0, P reveals π and opens all commitments. V verifies that they

correspond to the π-permuted adjacency matrix of G.
• if b = 1, P sends (π(v1), . . . , π(vn)) and only opens the commitments

of M of the edges along this path. V verifies if all opening are valid
and open to 1, and if all vertices are different.

(Note: instead of an adjacency matrix, we can also send the list of edges, but we need to
shuffle them so that their position in the list reveals no information on the graph)Léo Colisson | 30

blenderpoint
{"type": "addMe"}

Formally defining ZK proofs

Léo Colisson | 31

blenderpoint
{"type": "addMe"}

Formally defining ZK proofs

Léo Colisson | 31

blenderpoint
{"type": "addMe"}

Formally defining ZK proofs

Léo Colisson | 31

blenderpoint
{"type": "addMe"}

Formally defining ZK proofs

Léo Colisson | 31

blenderpoint
{"type": "addMe"}

Formally defining ZK proofs

Definition (ZK proof system)

A ZK proof system for a language L in NP, such that x ∈ L ⇔ ∃w, xRw, is defined by
a protocol between an efficient verifier V(x) (outputting either accept or reject) and a
prover P(x,w), such that the protocol is:
• Correct: if ∃w, xRw, V(x) always accepts after interacting with P(x,w)

• Soundness: if x /∈ L, V(x) accepts with negligible probability after interacting with
any malicious prover P∗(x,w) (if P∗ is restricted to be efficient, we often refer to
this as an argument system instead of a proof system, but we will not make much
distinction here)

• Zero-Knowledge: For any malicious efficient (if it is not restricted to be efficient,
we refer to it as statistical ZK) verifier V∗(x), there exists an efficient probabilistic
algorithm S∗ (that can depend arbitrarily on V∗), called “simulator”, such that for
any xRw, the output of V∗(x) interacting with P(x,w) is computationally
indistinguishable from S∗(x).

Léo Colisson | 32

blenderpoint
{"type": "addMe"}

Formally defining ZK proofs

? Show that if a protocol is ZK for an NP-complete problem, and if
P ̸= NP, then V∗ is, in particular, unable to recover the witness.

Idea: if V∗(x) can output the witness w after interacting with P(x,w), then
S∗(x) is also a witness (otherwise it is easy to distinguish both distributions by
simply verifying if it is a valid witness). But S∗(x) is efficient, which is absurd as
the problem is NP complete, unless P = NP.

Léo Colisson | 33

blenderpoint
{"type": "addMe"}

Formally defining ZK proofs

? Show that if a protocol is ZK for an NP-complete problem, and if
P ̸= NP, then V∗ is, in particular, unable to recover the witness.

Idea: if V∗(x) can output the witness w after interacting with P(x,w), then
S∗(x) is also a witness (otherwise it is easy to distinguish both distributions by
simply verifying if it is a valid witness). But S∗(x) is efficient, which is absurd as
the problem is NP complete, unless P = NP.

Léo Colisson | 33

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Theorem (ZK-Ham

The ZK protocol for the Hamiltonian path is zero-knowledge.

Proof: for the ZK part the proof needs to “rewind” the prover, details on white board and next
slides. Details can also be found, e.g., in
https://courses.csail.mit.edu/6.857/2018/files/L22-ZK-Boaz.pdf.

Léo Colisson | 34

blenderpoint
{"type": "addMe"}

https://courses.csail.mit.edu/6.857/2018/files/L22-ZK-Boaz.pdf

ZK proof of the Hamiltonian path

Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the soundness:

Léo Colisson | 36

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the soundness:

Léo Colisson | 36

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the soundness:

Léo Colisson | 36

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the soundness:

Léo Colisson | 36

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the soundness:

Léo Colisson | 36

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the soundness:

Léo Colisson | 36

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the soundness:

Léo Colisson | 36

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the soundness:

Léo Colisson | 36

blenderpoint
{"type": "addMe"}

Proof of knowledge

How can we be sure that the prover “knows” the secret?
E.g.: For y ∈ Z×

p , I can convince you that there exists x such that gx = y (e.g. g
is a generator of Z×

p , i.e. for all x dividing p− 1, gx ̸= 1), but I may not always
know x (hardness of discrete log).
proof of membership ̸= proof of knowledge
How to define this notion formally?

Léo Colisson | 37

blenderpoint
{"type": "addMe"}

Proof of knowledge

Léo Colisson | 38

blenderpoint
{"type": "addMe"}

Proof of knowledge

Léo Colisson | 38

blenderpoint
{"type": "addMe"}

Proof of knowledge

Léo Colisson | 38

blenderpoint
{"type": "addMe"}

Proof of knowledge

Definition (ZKPoK)

A ZK protocol for a language in NP (with relation R) is said to be a proof of
knowledge (ZKPoK) (with error κ(λ)) if there exists an efficient algorithm
E given rewindable oracle access to P∗, called an extractor, such that for
any x and prover P∗, if Pr [⟨P∗(x), V(x)⟩ = ⊤] > κ(|x|), EP∗(x) returns a
valid witness w (xRw) in time poly(λ)(|x|)

Pr[⟨P∗(x),V(x)⟩=⊤]−κ(|x|)

? Why isn’t it contradicting the ZK property?

Léo Colisson | 39

blenderpoint
{"type": "addMe"}

Proof of knowledge

Definition (ZKPoK)

A ZK protocol for a language in NP (with relation R) is said to be a proof of
knowledge (ZKPoK) (with error κ(λ)) if there exists an efficient algorithm
E given rewindable oracle access to P∗, called an extractor, such that for
any x and prover P∗, if Pr [⟨P∗(x), V(x)⟩ = ⊤] > κ(|x|), EP∗(x) returns a
valid witness w (xRw) in time poly(λ)(|x|)

Pr[⟨P∗(x),V(x)⟩=⊤]−κ(|x|)

? Why isn’t it contradicting the ZK property?

Léo Colisson | 39

blenderpoint
{"type": "addMe"}

Proof of knowledge

Definition (ZKPoK)

A ZK protocol for a language in NP (with relation R) is said to be a proof of
knowledge (ZKPoK) (with error κ(λ)) if there exists an efficient algorithm
E given rewindable oracle access to P∗, called an extractor, such that for
any x and prover P∗, if Pr [⟨P∗(x), V(x)⟩ = ⊤] > κ(|x|), EP∗(x) returns a
valid witness w (xRw) in time poly(λ)(|x|)

Pr[⟨P∗(x),V(x)⟩=⊤]−κ(|x|)

? Why isn’t it contradicting the ZK property?

Léo Colisson | 39

blenderpoint
{"type": "addMe"}

Proof of knowledge

Definition (ZKPoK)

A ZK protocol for a language in NP (with relation R) is said to be a proof of
knowledge (ZKPoK) (with error κ(λ)) if there exists an efficient algorithm
E given rewindable oracle access to P∗, called an extractor, such that for
any x and prover P∗, if Pr [⟨P∗(x), V(x)⟩ = ⊤] > κ(|x|), EP∗(x) returns a
valid witness w (xRw) in time poly(λ)(|x|)

Pr[⟨P∗(x),V(x)⟩=⊤]−κ(|x|)

? Why isn’t it contradicting the ZK property?
The extractor can rewind P∗ etc

Léo Colisson | 39

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Theorem (ZK-Ham

The ZK protocol for the Hamiltonian path is a zero-knowledge proof of
knowledge.

Proof idea: the extractor plays the protocol honestly with b = 0, rewinds P∗, and then sends
b = 1. This way it gets both a Hamiltonian path and π, so it can revert π on the Hamiltonian
path to recover a Hamiltonian path on G.

When sending 2 challenges is enough to recover the witness = called special soundness

Léo Colisson | 40

blenderpoint
{"type": "addMe"}

Reducing interactivity

blenderpoint
{"type": "addMe"}

Parallel repetition

For efficiency, tempting to repeat the ZK protocol for Hamiltonian path in
parallel instead of sequentially.

1 Wrong in general: there exist ZK protocols secure when composed
sequentially, but not in parallel [Feige, Shamir STOC 90] (see next slide)

2 Unknown for the protocol for Hamiltonian paths
3 Known for this protocol if the challenges of the verifier are random

(semi-honest verifier)⇒ Fiat-shamir’s construction has this property!

Léo Colisson | 42

blenderpoint
{"type": "addMe"}

Parallel repetition

?

Can you prove that this scheme is NOT
Zero-Knowledge when composed in
parallel twice?

Léo Colisson | 43

blenderpoint
{"type": "addMe"}

Parallel repetition

?

Can you prove that this scheme is NOT
Zero-Knowledge when composed in
parallel twice?

Léo Colisson | 43

blenderpoint
{"type": "addMe"}

Sigma protocol

Léo Colisson | 44

blenderpoint
{"type": "addMe"}

Sigma protocol

Léo Colisson | 44

blenderpoint
{"type": "addMe"}

Fiat Shamir

How to make the protocol non-interactive (NIZK): Fiat-Shamir transform
1 Run the protocol in parallel
2 Replace the challenge with the hash of all commitments of first phase

Léo Colisson | 45

blenderpoint
{"type": "addMe"}

Fiat Shamir

? Is it still secure if we hash the challenges one by one?

Léo Colisson | 46

blenderpoint
{"type": "addMe"}

Fiat Shamir

How to prove security of the Fiat Shamir transform?

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Fiat Shamir

How to prove security of the Fiat Shamir transform?

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Fiat Shamir

How to prove security of the Fiat Shamir transform?

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Fiat Shamir

How to prove security of the Fiat Shamir transform?

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Fiat Shamir

How to prove security of the Fiat Shamir transform?

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Fiat Shamir

How to prove security of the Fiat Shamir transform?

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Fiat Shamir

How to prove security of the Fiat Shamir transform?

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Fiat Shamir

How to prove security of the Fiat Shamir transform?

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Fiat Shamir

How to prove security of the Fiat Shamir transform?

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Fiat Shamir

How to prove security of the Fiat Shamir transform?

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Fiat Shamir

How to prove security of the Fiat Shamir transform?
Solutions:

• Consider the Random Oracle Model
• The simulator can reprogram the oracle

Léo Colisson | 48

blenderpoint
{"type": "addMe"}

Efficiency?

Universal Efficient Simplicity Post-quantum
Hamiltonian path

Specialized approaches Depends
ZK-SNARK
ZK-STARK

Léo Colisson | 49

blenderpoint
{"type": "addMe"}

Efficiency?

Universal Efficient Simplicity Post-quantum
Hamiltonian path

Specialized approaches Depends
ZK-SNARK
ZK-STARK

Léo Colisson | 49

blenderpoint
{"type": "addMe"}

Efficiency?

Universal Efficient Simplicity Post-quantum
Hamiltonian path

Specialized approaches Depends
ZK-SNARK
ZK-STARK

Léo Colisson | 49

blenderpoint
{"type": "addMe"}

More efficient authentication &
signature protocols

blenderpoint
{"type": "addMe"}

Zero-Knowledge proofs for discrete logarithm (DL)

Specialized solution: I know x such that gx = y (operations in Z×
p or arbitrary

cyclic group G).

ZK for the discrete logarithm (DL)

Alice(p,g, y, x) Bob(p,g, y)

r $← Z∗
p

R := gr

b b $← {0,1}

s := (r+ bx) mod (p− 1) s

return gs ?
= Ryb

? Prove the correctness.
Léo Colisson | 51

blenderpoint
{"type": "addMe"}

Zero-Knowledge proofs for discrete logarithm (DL)

Specialized solution: I know x such that gx = y (operations in Z×
p or arbitrary

cyclic group G).

ZK for the discrete logarithm (DL)

Alice(p,g, y, x) Bob(p,g, y)

r $← Z∗
p

R := gr

b b $← {0,1}

s := (r+ bx) mod (p− 1)
gp−1 = 1 (Fermat’s little thm)

s

return gs ?
= Ryb

? Prove the correctness.
Léo Colisson | 51

blenderpoint
{"type": "addMe"}

Zero-Knowledge proofs for discrete logarithm (DL)

Specialized solution: I know x such that gx = y (operations in Z×
p or arbitrary

cyclic group G).

ZK for the discrete logarithm (DL)

Alice(p,g, y, x) Bob(p,g, y)

r $← Z∗
p

R := gr

b b $← {0,1}

s := (r+ bx) mod (p− 1)
gp−1 = 1 (Fermat’s little thm)

s

return gs ?
= Ryb

= gr(gx)b = gr+bx

? Prove the correctness.
Léo Colisson | 51

blenderpoint
{"type": "addMe"}

Zero-Knowledge proofs for discrete logarithm (DL)

Léo Colisson | 52

blenderpoint
{"type": "addMe"}

Zero-Knowledge proofs for discrete logarithm (DL)

Léo Colisson | 52

blenderpoint
{"type": "addMe"}

Zero-Knowledge proofs for discrete logarithm (DL)

Léo Colisson | 52

blenderpoint
{"type": "addMe"}

Zero-Knowledge proofs for discrete logarithm (DL)

Léo Colisson | 52

blenderpoint
{"type": "addMe"}

Zero-Knowledge proofs for discrete logarithm (DL)

Léo Colisson | 52

blenderpoint
{"type": "addMe"}

Zero-Knowledge proofs for discrete logarithm (DL)

?
Prove that this protocol is:
• ZK
• sound
• special sound

Léo Colisson | 53

blenderpoint
{"type": "addMe"}

Schnorr signature

Problem of the above protocol: need n rounds to have security 1
2n . Not very

efficient.
Schnorr signature = 1 round without (quite inneficient) Fiat Shamir!
⇒ Idea: more than 2 challenges.

Léo Colisson | 54

blenderpoint
{"type": "addMe"}

Schnorr signature

Schnorr authentication

Alice(p,g, y

Kept by some trusted authority, gx = y

, x) Bob(p,g, y)

r $← Z∗
p

R := gr

c c $← Z∗
p

s := (r+ cx) mod (p− 1) s

return ???
?
=???

? Find the verification procedure.

Léo Colisson | 55

blenderpoint
{"type": "addMe"}

Schnorr signature

Schnorr authentication

Alice(p,g, y

Kept by some trusted authority, gx = y

, x) Bob(p,g, y)

r $← Z∗
p

R := gr

c c $← Z∗
p

s := (r+ cx) mod (p− 1) s

return gs ?
= Ryc

? Find the verification procedure.

Léo Colisson | 55

blenderpoint
{"type": "addMe"}

Schnorr signature

This allows someone to check if we interact with Alice, but two issues:
• this is interactive
• not a signature for now

⇒ Solution: Fiat-Shamir (one round) where the hash is based on the message
to sign and commit.

Léo Colisson | 56

blenderpoint
{"type": "addMe"}

Schnorr signature

Schnorr signature

Let H : G × {0,1}∗ → Z∗
q be a hash function, m a message to sign and

y = gx such that x is kept secret by Alice, and y is public.

Alice(p,g, y, x,m) Bob(p,g, y,m)
r $← Z∗

p

R := gr

c := H(R,m)

s := (r+ cx) mod (p− 1) (R, s)

return gs ?
= hyH(R,m)

Léo Colisson | 57

blenderpoint
{"type": "addMe"}

Schnorr signature

Schnorr’s signature is used in real life, e.g. in the Bitcoin protocol (group:
secp256k1 elliptic curve) to replace ECDSA:
• Provably secure: strongly unforgeable under chosen message attack

(SUF-CMA) in the ROM assuming hardness of DL
• Can be generalized to sign a message collaboratively exploiting

linearity

https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

Léo Colisson | 58

blenderpoint
{"type": "addMe"}

https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

Goldreich-Levin construction

blenderpoint
{"type": "addMe"}

Goldreich-Levin

Earlier: how to obtain bit commitment from one-way permutations:
• f : {0, 1}∗ → {0, 1}∗
• p : {0, 1}∗ → {0, 1} hard-core predicate

(hard to guess p(x) given f (x), exists thanks to the Goldreich-Levin
theorem)

• x ∈ {0, 1}
Commit(x, r) = (f (r), p(r)⊕ x), Open((y, b), x, r) = ((y, b)

?
= (f (r), p(r)⊕ x))

(permutation needed for (statistical) binding, otherwise we need something
like collision resistance)

Léo Colisson | 60

blenderpoint
{"type": "addMe"}

Goldreich-Levin

Earlier: how to obtain bit commitment from one-way permutations:
• f : {0, 1}∗ → {0, 1}∗
• p : {0, 1}∗ → {0, 1} hard-core predicate

(hard to guess p(x) given f (x), exists thanks to the Goldreich-Levin
theorem)

• x ∈ {0, 1}
Commit(x, r) = (f (r), p(r)⊕ x), Open((y, b), x, r) = ((y, b)

?
= (f (r), p(r)⊕ x))

(permutation needed for (statistical) binding, otherwise we need something
like collision resistance)

Léo Colisson | 60

blenderpoint
{"type": "addMe"}

Goldreich-Levin

Léo Colisson | 61

blenderpoint
{"type": "addMe"}

Goldreich-Levin

Léo Colisson | 61

blenderpoint
{"type": "addMe"}

Goldreich-Levin

Léo Colisson | 61

blenderpoint
{"type": "addMe"}

Goldreich-Levin

Léo Colisson | 61

blenderpoint
{"type": "addMe"}

Goldreich-Levin

Léo Colisson | 61

blenderpoint
{"type": "addMe"}

Goldreich-Levin

Léo Colisson | 61

blenderpoint
{"type": "addMe"}

Goldreich-Levin

Theorem (Goldreich-Levin)

Let f be an arbitrary one-way function, and let f ′(x, r) := (f (x), r) where
|x| = |r|. Let p(x, r) := ⊕i(xiri). Then p is a hardcore predicate for f ′.

Proof sketch: By contradiction: For simplicity, assume there exists A(f ′(x)) that always
guesses g(x) correctly. Then, we can use A to invert f :

?
Show how A can be used to recover x from y := f (x).

We can recover x bit-by-bit:
1 First bit is A(y, 10 . . . 0) = g(x, 10 . . . 0) = x1 × 1+ x2 × 0+ . . . xn × 0 = x1
2 Second bit is A(y, 010 . . . 0), . . .
3 . . .

4 Last bit is A(y, 0 . . . 01)

Léo Colisson | 62

blenderpoint
{"type": "addMe"}

Goldreich-Levin

Theorem (Goldreich-Levin)

Let f be an arbitrary one-way function, and let f ′(x, r) := (f (x), r) where
|x| = |r|. Let p(x, r) := ⊕i(xiri). Then p is a hardcore predicate for f ′.

Proof sketch: By contradiction: For simplicity, assume there exists A(f ′(x)) that always
guesses g(x) correctly. Then, we can use A to invert f :

?
Show how A can be used to recover x from y := f (x).
We can recover x bit-by-bit:

1 First bit is A(y, 10 . . . 0) = g(x, 10 . . . 0) = x1 × 1+ x2 × 0+ . . . xn × 0 = x1
2 Second bit is A(y, 010 . . . 0), . . .
3 . . .

4 Last bit is A(y, 0 . . . 01)
Léo Colisson | 62

blenderpoint
{"type": "addMe"}

Goldreich Levin

Full proof: see Foundation of Cryptography, Volume 1, Oded Goldreich.

Léo Colisson | 63

blenderpoint
{"type": "addMe"}

