Advanced Crypto 2024
Zero-Knowledge Proofs

Léo COLISSON PALAIS

leo.colisson-palais@univ-grenoble-alpes.fr

https://leo.colisson.me/teaching.html

blenderpoint
{"type": "addMe"}

mailto:leo.colisson-palais@univ-grenoble-alpes.fr
https://leo.colisson.me/teaching.html

Zero-knowledge

Zero-Knowledge (ZK) Proof = prove a statement without revealing anything
beyond the fact that the statement is true.

Léo Colisson | 2

blenderpoint
{"type": "addMe"}

Applications ZK

Many applications:
e Authentication: “I know a secret x such that SHA3(x) = y”

* Privacy-preserving blockchain: “I can prove that this transaction is valid
without revealing the sender, receiver, nor the amount of the transaction”
(ZCash, see also smart contracts)

e Multi-party computing: “This circuit is an honesty-prepared garbled
circuit, but I won't reveal the keys of the circuit”

e Sensitive data: Say that the hash of your DNA (or medical record...) is
signed by a trusted authority. Then you can prove to any insurance that
you do not have a given genetic disorder without revealing your full DNA.
Also works to prove that your salary is greater/lower than XXX without
revealing it etc (needed by banks, housing allowance...).

Léo Colisson | 3

blenderpoint
{"type": "addMe"}

Classical Zero-Knowledge

blenderpoint
{"type": "insertVideo","folder": "Video_bank/","filename": "Teaching/Zero_knowledge_proofs/zk_with_sudoku.mp4","stops": "0, 6, 10, 13, 60, 143, 222, 307, 425, 510, 518, 524, 537","nbFrames": "539","firstFrame": "","lastFrame": "","speed": ""}

Classical Zero-Knowledge

Classical Zero-Knowledge

Yes! Solution exists?

I won't reveal it.

Classical Zero-Knowledge

Yes!
I won't reveal it.

Classical Zero-Knowledge

Yes!
I won't reveal it.

Classical Zero-Knowledge

Yes!
I won't reveal it.

Classical Zero-Knowledge

Yes!
I won't reveal it.

Classical Zero-Knowledge

Yes!
I won't reveal it.

Classical Zero-Knowledge

Yes!
I won't reveal it.

Classical Zero-Knowledge

Yes!
I won't reveal it.

Classical Zero-Knowledge

Yes!
I won't reveal it.

Classical Zero-Knowledge

Yes!
I won't reveal it.

Classical Zero-Knowledge

Yes!
I won't reveal it.

Generalizable in a non-interactive way to NP problems.

Issues

Still many questions:
e Sudoku are nice, but what else?
e How to replace physical cards?
e Can we make it fully non-interactive?
e Can we make the verification, e.g., logarithmic time?

Léo Colisson | 4

blenderpoint
{"type": "addMe"}

ZK proofs for NP

blenderpoint
{"type": "addMe"}

Definition (NP reminder)

A language £ C {0,1}* is said to be in the NP (nondeterministic poly-
nomial time) class if there exists an efficient (polynomial time) Turing
machine V such that x € L iff there exists a witness wy such that
V(x,wx) =1 (we may write XRwy).

L.e. a problemisin NP if it is easy to verify a solution.

Léo Colisson | 6

blenderpoint
{"type": "addMe"}

Examples of NP problems:
e The language of Sudoku (of arbitrary size) with a solution is in NP:

26 1]2]6[5]7]8[a]3]0
1]7 alsls|olz]2|1]7]6
K 6 7lol3|1]ale|s]s]2
6 s [s] |3 26]1]a]s|7]89]3
afl2le1]7 =|s|3|9]|2|6|1|7]5]|4]|(easy to verify)
s| 4] [e 6 s|7]al3]8lol2]6]n
8| |43 6|5|2|8|9|4a|3|1]7
4s olals|7]1]3]e|2]5
94 3(1]7]6l2]5]|9]a]s

e 3-SAT
e Graph coloring
* Hamiltonian path

Léo Colisson | 7

blenderpoint
{"type": "addMe"}

Examples of NP problems:
e The language of Sudoku (of arbitrary size) with a solution is in NP:

26 1]2]6[5]7]8[a]3]0
1]7 alsls|olz]2|1]7]6
K 6 7lol3|1]ale|s]s]2
6 s [s] |3 26]1]a]s|7]89]3
afl2le1]7 =|s|3|9]|2|6|1|7]5]|4]|(easy to verify)
s| 4] [e 6 s|7]al3]8lol2]6]n
8| |43 6|5|2|8|9|4a|3|1]7
4s olals|7]1]3]e|2]5
94 3(1]7]6l2]5]|9]a]s
¢ (3-SAT)= NP-complete

* (Graph coloring)= NP-complete
o [Hamiltonian path]:> NP-complete

Léo Colisson | 7

blenderpoint
{"type": "addMe"}

Definition (NP complete)

A language L is NP complete if given access to an oracle O(x) :=x € L,
one can efficiently tell if X' € £’ for any NP language £’ and word x'.

Léo Colisson | 8

blenderpoint
{"type": "addMe"}

ZK for NP

Theorem (informal)

For any NP language L, there exists a zero-knowledge protocol to prove
that a given word x belongs to £. Notably, no information on the witness
Wy is leaked to the prover.

Proof strategy:
L — SAT —— Hamiltonian path —— ZK for Hamiltonian path

Léo Colisson | 9

blenderpoint
{"type": "addMe"}

ZK for NP, step 1: £ to SAT

Definition (SAT)

A SAT (Boolean satisfiability) instance is defined by a conjunction of
clauses, where each clause is the disjunction of multiple literals (a
boolean variable or the negation of a boolean variable).

A SAT instance is said to be satisfiable if there exists an assignment mak-
ing the final formula true.

E.g.:
e (avb)A(=bvcvd)A(aV—d)
e (av-bv-c)yn(avbvc)A(bV-c)

Léo Colisson | 10

blenderpoint
{"type": "addMe"}

ZK for NP, step 1: £ to SAT

First step: reduce L to a SAT instance (possible: SAT is NP complete and L is in
NP). How?

= Tseytin transformation:
e x is public, so we can consider the boolean circuit of the function
f(w) =V(x,w)
e Add a new variable for each wire in the circuit of f (need to add new
variables to avoid exponential increase in the number of clauses)

e For each gate g in the circuit of f, add new clauses to constraint the
variable of the output wire o to be such that o = g(iy, ..., in) where
i1,...,In are the variable of the input wires of g. How to find the clauses?

Léo Colisson | 11

blenderpoint
{"type": "addMe"}

ZK for NP, step 1: £ to SAT

How to find the clauses to constraint o = g(iy, ..., in)?
@ Method 1:

® Rewrite 0 & g(iy,...,In) as a boolean formula ¢ involving only A, v and —,
using the factthata = b iff b v —a.

® Express —¢ as a disjunctive normal form, using first the Morgan laws
(=(AVvB)=(-A)A(-B)and -(A AB) = (—A) v (—B)) to “push down” the
negations, then distributivity laws (AVvB)AC = (AAC)V (BAC))to “push
down” the conjunction.

® Compute again the negation of —¢ to recover ¢ (since ——¢ = ¢) using
Morgan laws and simplification of double negation to get the conjunctive
normal form of ¢

Léo Colisson | 12

blenderpoint
{"type": "addMe"}

ZK for NP, step 1: £ to SAT

E.g. for c = a A b (we denote —a as @, A as multiplication and Vv as addition since distributivity is
easier to see with this notation):

¢ = (¢ < ab) = (¢ = ab)(ab = ¢) = (ab +¢)(c + ab)

b= (ab+7c)(c+ab)=ab+c+c+ab=abc+cab = (@+ b)c+cab = ac + bc + cab
¢ = ¢ = ac + bc + cab = (ac)(bc)(Cab) = (@+<)(b+¢)(C+a+b) = (a+)b +c)(c+a+b)
Hence we add the clauses (aVv —¢c) A (bV —c) A (cV —a V —b)

Similarly, for an OR gate: (aVbV¢) A (@avc)A(bVec)

Léo Colisson | 13

blenderpoint
{"type": "addMe"}

ZK for NP, step 1: £ to SAT

How to find the clauses to constraint o = g(iy, ..., #n)?
® Method 2:
e Write the truth table of 0 < g(iy,...,in)
® Remark that the expression is true only if we are not in each line where the
truth table is wrong: this directly gives a CNF by putting one clause per such
line, where the literals are the negation of the assignments of this line.

E.g.forc=aAb:
b c | Truthvalue Clausesto add

a

0 0 0 1

0 0 1 0 avbv-c

01 0 1

01 1 0 av-bv-c (maybe not optimal, see also Karnaugh map)
10 0 1

1 0 1 0 -aVvbvVv-c

1 1 0 0 -aVv-bvc

11 1 1

Léo Colisson | 14

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Issue with SAT: no good way to do ZK directly on SAT.

= Turn SAT to Hamiltonian path!

Léo Colisson | 15

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Definition (Hamiltonian path)

A Hamiltonian path in a directed graph G = (V,E) is a path P = (v1,...,vn) Where
n = |V|, i.e. a list of nodes such that for any i, (v;,vi;1) € E, that visits all vertices in V
exactlyonce (i.e. foralli # i’, v; # vy). The decision version of the problem is to determine
if there exists such a path.

Which graph(s) admit(s) an Hamiltonian path?

O None

® Firstone
@ Second one
® Both

Léo Colisson | 16

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Definition (Hamiltonian path)

A Hamiltonian path in a directed graph G = (V,E) is a path P = (v4,...,va) Where
n = |V|, i.e. a list of nodes such that for any i, (v;,vi;1) € E, that visits all vertices in V
exactlyonce (i.e.foralli # i’, v; # v). The decision version of the problem is to determine
if there exists such a path.

Which graph(s) admit(s) an Hamiltonian path?

® None
O Firstone

@ Second one

® Both

Léo Colisson | 16

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Theorem (Hamiltonian path is NP-complete)

For any SAT instance S, one can build in polynomial time a graph Gs that
admits a Hamiltonian path iff S is satisfiable.

Instead of proving that a SAT instance is satisfiable, we can prove that a graph
has a Hamiltonian path!

Léo Colisson | 17

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Step 1 construction: for each variable x, we create a diamond as follows, where the middle
pattern repeats j times, where j is the number of clauses in S involving x:

second clause

first clause

How many Hamiltonian paths can you find in this graph?
0o
(B
@

® 3 or more

Léo Colisson | 18

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Step 1 construction: for each variable x, we create a diamond as follows, where the middle
pattern repeats j times, where j is the number of clauses in S involving x:

How many Hamiltonian paths can you find in this graph?
Qo
(B
G2y

® 3 or more

Léo Colisson | 18

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Step 2 construction: we connect the diamonds as a chain (order does not
matter)

How many Hamiltonian paths can you find
in this graph (suppose S has n variables)?

Qo0
®n
@2
® Other

Léo Colisson | 19

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Step 2 construction: we connect the diamonds as a chain (order does not
matter)

How many Hamiltonian paths can you find
in this graph (suppose S has n variables)?

Qo0
®n
@2y
® Other

Léo Colisson | 19

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Last step construction: we add one node n. per clause ¢, and for each variable x in ¢, we add
two edges from this node to the two nodes a and b (a being to the left of b) of a free blue block
in the diamond of x, where the direction is a — n. — b if the variable appears positively in the
clause, and b — n. — a if the negation of x is in the clause.

What is the formula encoded by the graph on the
left?

O (-av-b)A(a)
(av —=b) A (—a)
(aVv =b) A (maV —b)
(aVv =b) A (—cC)
(an=b)V (—a)

(8]
CJ
D]
e

Léo Colisson | 20

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

Last step construction: we add one node n. per clause ¢, and for each variable x in ¢, we add
two edges from this node to the two nodes a and b (a being to the left of b) of a free blue block
in the diamond of x, where the direction is a — n. — b if the variable appears positively in the
clause, and b — n. — a if the negation of x is in the clause.

What is the formula encoded by the graph on the
left?

O (-av-b)A(a)

(av -b) A (-a)
(aVv =b) A (maV —b)
(aVv =b) A (=)
(an=b)V (—a)

0
CJ
D]
e

Léo Colisson | 20

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

A
&e Q,W‘

The resulting graph admits a Hamiltonian path iff S is
satisfiable.

Proof skech:

<! quite easy

= bit more technical: we must prove that all Hamiltonian
paths have a “normal” form, i.e.:

e it visits the variables in order,

¢ all nodes of the variable are visited in a “Z" shape (two
possible directions = interpret as true or false),

e if we leave one node in a blue box to a clause node, the
next step is on the other node in the same blue box,

(Demonstration on board)

Léo Colisson | 21

blenderpoint
{"type": "addMe"}

ZK for NP, step 2: SAT to Hamiltonian path

NB: important to keep the “separation nodes” between the blue boxes! Otherwise possible
to find weird paths visiting the nodes in different directions:

!

Léo Colisson | 22

blenderpoint
{"type": "addMe"}

What is the cryptographic equivalent of the “cards” used in the sudoku game?

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

What is the cryptographic equivalent of the “cards” used in the sudoku game?

= commitments!

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

Commitments

Definition (Commitment)

Let Commit(x,r), Open(c, x,r) be two probabilistic algorithms (implicitly depending on
a security parameter \). They are said to be a commitment if it is:
® Correct: for any x and r, Open(Commit(x,r),x,r) =T

¢ Hiding: “Commitments reveal no info on x”
For any x,x’, and adversary A,

Pr r&{0,132 [A(C) :1] — Pr r&10,132 [A(C) =1]
c<+Commit(x,r) c+Commit(x’,r)

* Binding: “Hard to open to two different values”
For any adversary A,
Pro o rx ryea@y LOPEN(C,X,T) = Open(c,x’,r’) = T Ax # X'] < negl())

< negl(})

Léo Colisson | 24

blenderpoint
{"type": "addMe"}

How to obtain commitments?

¢ Method 1: Random Oracle model: ,
Commit(x,r) = H(r||x), Open(c,x,r) = (¢ = H(r||x))
¢ Method 2: One-way permutations (bit commitment):
° f:{0,1}* — {0,1}*
* p:{0,1}* — {0,1} hard-core predicate
(hard to guess p(x) given f(x), exists thanks to the Goldreich-Levin theorem)
* xe{0,1}

Commit(x,) = (f(r), p(r) & x), Open((y, b),x,r) = ((y,b) = (f(r),p(r) ® X))
(permutation needed for (statistical) binding, otherwise we need
something like collision resistance)

Léo Colisson | 25

blenderpoint
{"type": "addMe"}

How to obtain commitments?

e Method 3: PRG (exists from one-way functions)
® G:{0,1}* — {0,1}*, such that Vs, |G(s)| = 3|s]
* We assume that the receiver sent a random rq <& {0, 1}°" before the commit
phase
* xe{0,1}

Commit(x,r) = G(r) @ (xrg), Open(c,x,r) = (G(r) @ (xry) Z C)

Léo Colisson | 26

blenderpoint
{"type": "addMe"}

Commitments

There exists no statistically hiding and statistically binding commitment
scheme, but there exists both:
e statistical hiding + computational binding (many-to-one hash function)

=

e computational hiding + statistical binding (injective hash function)

blenderpoint
{"type": "addMe"}

ZK for NP, step 3: ZK for Hamiltonian path

Claim (ZK for Hamiltonian path, informal)

For any graph G, it is possible to prove that we know a Hamiltonian path
for G without revealing anything about this path.

Can you find how, based on the Sudoku example?

Léo Colisson | 28

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path (informal)

Léo Colisson | 29

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path (informal)

)2‘ ?Yo"(/\

T A =2

2~ 4

3 =3

5 ¢ — 1
}/0 ‘2(4 S — 5

- >
h 7

Léo Colisson | 29

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path (informal)

T = commi l’m@»&-
R ?Yo\l&\

/\"’V\/\,\,_> ﬂ_’_,>
=
2 %)

6,/

Gl

~ K

Léo Colisson | 29

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path (informal)

T = commi l’m@»&-
R ?Yo\l&\

/\/\/\/\/‘/__> ﬂ
Sii S§§ § é<9:'}

Léo Colisson | 29

~ K

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path (informal)

T = commi l’m@»&-
2 /‘)Yo\l(/\

/\/\/\/\/\,__y ﬂ
PACIK:

4@%3

~ K

OPEMJ Copmmitme.)
"“' >

Léo Colisson | 29

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path (informal)

D = commilrmesnl—
2 /‘)Yo\l(/\ ’
* -
/ o
5
5, R ¢
T 2
7 d efo1%
% - /2/3 éi"‘
1
D =opened
C;nm‘}’m:enls

|
Léo Colisson | 29 a’wg-

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

ZK-Ham protocol

Protocol (V(G), P(G, Vy)), where G = (Vg, E¢) is a directed graph, and Vg = (v1,...,Vn)
is a Hamiltonian path = repeat the following poly()) times:
@ The prover P picks a random permutation 7 on {1,...,n}, let M be the
m-permuted adjacency matrix of G, i.e. M.~y = 1iff (i,j) € E. P sends a
commitment of each entryin M to V.

@ The verifier V picks a random bit b <% {0,1} and sends it to P.

© e ifb =0, Preveals 7 and opens all commitments. V verifies that they
correspond to the m-permuted adjacency matrix of G.
e ifb=1, Psends (w(vy),...,7(vy)) and only opens the commitments
of M of the edges along this path. V verifies if all opening are valid
and open to 1, and if all vertices are different.

\.

(Note: instead of an adjacency matrix, we can also send the list of edges, but we need to
shuffle them so that their position in the [iésot(_l;gysgglﬁgao information on the graph)

blenderpoint
{"type": "addMe"}

Formally defining ZK proofs

5 Goraaps

blenderpoint
{"type": "addMe"}

Formally defining ZK proofs
/— 5 Goraaps

@ Covrec kness

" Ever one honesk
= V acceFLS ”

%QW
V \
1
x

g

Léo Colisson | 31

blenderpoint
{"type": "addMe"}

Formally defining ZK proofs
ﬁ Gd’zps
s)

@ Covreckness @ SounJHeSS
—_ = - ;
\ K
E\/e.l?jone hanejl\/’ Ha_(lc 1 ovUs ?rl_ov&\ ?
= V aCCeFB Cannol convince V x} x.fuf
x%w
2 ¢Z

B (’”\

Léo Colisson | 31

blenderpoint
{"type": "addMe"}

Formally defining ZK proofs

o Couls
e) >

@ Comeckoess @ Soundness &) 2R knowledge
S - =
W X
EV&%one hﬂVlfS/\/’ Ha_(lc 1 ous ?rl_ov% CP Hal,'c_:‘ou} V&u € \/-K{ZQJV\S
->xgw accepls Cannol convince V' if acff no”"""lg, oboul Yhe wibness w”

x £ 36 ’° @ ’_f
K (’”\ i (%) Lv[l

% [eeq]

—

Léo Colisson | 31

blenderpoint
{"type": "addMe"}

Formally defining ZK proofs

Definition (ZK proof system)

A ZK proof system for a language £ in NP, such that x € £ < 3w, xRw, is defined by
a protocol between an efficient verifier V(x) (outputting either accept or reject) and a
prover P(x,w), such that the protocol is:

e Correct: if 3w, xRw, V(x) always accepts after interacting with P(x, w)

® Soundness: if x ¢ £, V(x) accepts with negligible probability after interacting with
any malicious prover P*(x, w) (if P* is restricted to be efficient, we often refer to
this as an argument system instead of a proof system, but we will not make much
distinction here)

® Zero-Knowledge: For any malicious efficient (if it is not restricted to be efficient,
we refer to it as statistical ZK) verifier V*(x), there exists an efficient probabilistic
algorithm S* (that can depend arbitrarily on V*), called “simulator”, such that for
any xRw, the output of V*(x) interacting with P(x, w) is computationally
indistinguishable from S*(x).

Léo Colisson | 32

blenderpoint
{"type": "addMe"}

Formally defining ZK proofs

Show that if a protocol is ZK for an NP-complete problem, and if
P # NP, then V* is, in particular, unable to recover the witness.

Léo Colisson | 33

blenderpoint
{"type": "addMe"}

Formally defining ZK proofs

Show that if a protocol is ZK for an NP-complete problem, and if
P # NP, then V* is, in particular, unable to recover the witness.

Idea: if V*(x) can output the witness w after interacting with P(x, w), then
S*(x) is also a witness (otherwise it is easy to distinguish both distributions by
simply verifying if it is a valid witness). But $*(x) is efficient, which is absurd as
the problem is NP complete, unless P = NP.

Léo Colisson | 33

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Theorem (ZK-Ham

The ZK protocol for the Hamiltonian path is zero-knowledge.

Proof: for the ZK part the proof needs to “rewind” the prover, details on white board and next
slides. Details can also be found, e.g., in

https://courses.csail.mit.edu/6.857/2018/files/L22-ZK-Boaz.pdf.

Léo Colisson | 34

blenderpoint
{"type": "addMe"}

https://courses.csail.mit.edu/6.857/2018/files/L22-ZK-Boaz.pdf

ZK proof of the Hamiltonian path
?\‘5\(cuA oz

aon
Proof of the zero-knowledge:

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

FCM = ilf \/jF be « ME["C‘WA Vﬂ«/«va, and xR w.
Proof of the zero-knowledge: Wanb Fo shoew Fhe HPOS} S"Mv* <\

L w x, z

C’m;
I *
(? ész& ~ S"'M\/*

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

FCM &= cﬂl’ \/'-"F be a amaliccown Vewle, and xR w.

Proofofthe zero- knowledge Wanlk Fo ghow H"@\' A pv} Sm« WAEAS

C,’m.,* /‘T Claim - we can J/me

nm(j_ﬂ Guess daal[&.,f / V?
b <——{'Dl'§

~Léd Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

~ cﬂlf \/”F be a amaliciown V&«/J,. and 2R w.
Proofofthe zero- knowledge Wank Fo show Fhat o pv} Sim WAEAS

C,’m.,* /‘T Clainm - we can J/me

IM\ (,j_‘ﬂ Guess dﬂa”hf f V?

o b <-—fol"3 Commialy one
b o ?uMJ/e‘L
Prck oo T, s 44.4';“’{’“‘.’/",‘,
(Comm (1), Comm (gﬂﬂ %
Yo gimulakel \/”€ sbkacn
CL‘Q[[&h b,
L= b G‘,m all Canm.Lm.L'A
. Gobo @) (= newind)™”

~Léd Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

- cﬂlf \/;,F b& a_malao«A V&«/Ja and 2R w.
Proofofthe zero- knowledge Wanl Fo show Fhal F pely Simm p ¥

C”"“"’ C(wm—\ we can af/me
I'M Commik aleies

A bj 4.
wess chall * ' =4
Sim (:t:ﬂ 6 ss l&"j‘“/ v }Emk%mlm’fr; ehmd A4 A
@ b <——{'Dl3 g%::;"dﬁzly one (Comm (—n'), Comm (! Y)}
g b o ,LvMJ/e‘L :
Prek AMJOM’H—_ }‘l w{';“’{“ﬂ/v‘, A
C Comm (), Comm (Gvﬂ o
o gimulakel v* sbFacn
CL‘Q[[&h b .

L= b G‘,m all Canm.Lm.L'A
: Gobo (@) (= newind)"*""

£d Colisson | 35

to Slmlq,[’{,i \/’F OH'Q‘,\/I
challe.. ,
&é’l\o b GPM /]_amiam]—la/m fut.”‘
Gobo @ (= MWMJ)
ackain ovkpul V¥

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

ooy g 2 cﬂ]f V¥ be a omalicionn V&«/M,. and 2R uw.
Proofofthe zero knowledge Wank Fo show Fhal o pe 1 Sim WAERS

(? C’;"“; I'M C(wm—\ we can af/me
Cpmml’uhnu
A by 4.
g%:i: J
?I'C-k A.aMJom’n'; S 4 4 1. '{
(Comm (1), Cowm(; ‘)3

1
) t Symlq,[’{‘; V*F ou'am
Tave . C [[&h

&é’l\o b GPM /Lamclm Llarm f‘-“’
Goi"o @ (/‘E.Wnncl)
(A A

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

GCM &= cﬂl’ \/'-"F be « amalicionn \/&-4/4,. and 2R w.
Proof of the zerfknowledge Wank Fo show Fhal 390} Siem SV
L w o, /—_/

Gﬂ; * S C{W’W\ /{ S{rmv* s (N (eA/Fe\/iji;
(? é_h—' ~ V2 iome => Show ba Aewing =
v) & L s £
}'\\; 4. Commbakdals of ﬂb

; .
S Mw(x Trck /laM‘l°'*"rr_ Sl’“g -
® be—fol"s (comm (), C""’”"(")3
gi=o
, 1 o
'?c.k /I.Ml‘”“'"n—— Sem "o g,mlq_[’{,; \/1F ohl'aln

(Comm (1), Comm (G)
o gimulabel v* sbkacn
CL‘Q[[&h b,

L= b G‘,m all Canm,bm.h
: Gobo @) (= newind)®

£d Colisson | 35

Chellen

&é’l\o b GPM /]_amiam]—lm fut.l"h'
Goi"o @ (/‘E.Ww)cl) vo
Mka.vh auypql’ V*

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

GCM &= cﬂl’ \/'-"F be « amalicionn \/&-4/4,. and 2R w.
Proof of the zerfknowledge Wank Fo show Fhal 390} Siem SV
L w o, /—_/

ﬁ; * S C{WM« /{ S:rmv* /l':;m/_s n (i/ﬂe\/cjfi;
Y é_‘L It o biame => Show ewind =
v] ‘(ﬁ%};
C.,mm }s 0} ﬂ

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

GCM &= il’ \/% b& a_(w‘q,[ao«A V&«/J/: and xR w.

Proofofthe zero knowledge Wanb Fo show rha HPO} S vr S b

C’am-, wrm /(Slrm\/* Nl (N (Q/Fe\/c:p&[;l
m Py o noba Aewsi nd = /2'"F
' \/v fay }'l =7 sl’l w ﬁ .

= Proba v* e b givem

Comm i\ bs o Y.

Yef Comm is bideyg f W LV LBI=E>% 5

Gue_SS (ac“ ’CR\‘
= é-(a,lj)
L- Aakorn Cormnm(n. x,)

/rwvm,o kb whe V \’a A«-S}IH 51'\
o A& 7

R

GU&SS (xu ik\' Agof

L é-(a”]f‘
L neborn CéIMM’\{IL %)

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

QCM == il, \/* be a_mlj, \—WA V&«/J,. and 2R w.
Proofofthe zero- knowledge Wank fo show Fha wa} Sim s sV

C”"“" wrm /(S:m\v* Asams (N (Q/FZ\/cpec[;
noba Aewind = 9t}
\/v Fog)’lM,? sldow ﬁ
—CP‘ﬂamlf.-}v* bs geb b b?‘
. . £ v
Qe Comm is hidug if TP LV (f(g)),b)3>l4@

/fvma,o k’ whe V \’a A«-S}IH 51'\
Gue_ffg(ﬂ:l‘;} ,ck\, 7;-2{1. ’f }aMof / cveny Com{;:&ﬂl«

L. nelorn Cormnm(n. 2. call Gm[x z), where %o 15 flhe o\yecir

oy Vo Commit whom b=o, amlx, whenb =1 -
g GU&SS (QCL:’CR\f of
" ot R = Pbsiad since comibpneals awe
L neborn Camrm{m 2) o Colisson | 55 }w'&‘yg ’V So o?ﬁaLR_ aLwind =4/z+w}P

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

- cﬂlf \/;,F b& a_malao«A V&«/Ja and 2R w.
Proofofthe zero- knowledge Wanl Fo show Fhal F pely Simm p ¥

aco| = 42‘”"\(6 5““3
C”"""’ Cladm 2 im\('.[we reave~ P8
(om Ml’ ML"’M
A by 4.
INEEs /

’ gug challes, vx

M(aﬂ) {‘“/ Pick aombom T snd 4

@ b <_,{‘Dl3 &%ﬁ’:‘;dﬁlkj one (Comm (’T)l Comm (' “)3
A

g f=o: uMJ’eL
Prck aomdom T, sed wl,;“?“”’w
(Comm ("ﬂ’) Comm (Gvn %
to glmlqueé \/’F abkzu]
CL‘Q[[&h b)

L= b G‘,m all Canm.Lm.L'A
: Gobo @) (= newind)®"”

£d Colisson | 35

to Srmla.[’eé \/“‘ ,,Iol'am/l
challen ,
&é‘e\o b Gpem /Lamlaw\ Hom. f"”‘
Goi"o @ (= AE-WIV)CL)
ackan, ovlpul V¥

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

- cﬂlf \/;,F b& a_malao«A V&«/Ja and 2R w.
Proofofthe zero- knowledge Wanl Fo show Fhal F pely Simm p ¥

acol = n_ng'n\/e 5““3
C”"""’ Clacm 2 im\('.[we reave~ P8
(om Ml’ ML"’M
A by 4.
B4 J

; 1 Guess C"'ﬂ”&“' Vr
Sy {‘n/ Prcke agmdom T, s
@ be—fol'k ﬁ:‘;ﬁll’/m (Comm (1), Cowm .'
gb o d .z,l!"“‘J/e‘L .
'? e e /I.MJ"M’H—— w{';a’{}w‘/v‘, Po g”“la.lq,['{$ V’F ahpau\
(Comm (), Comm (6 n °/ (,L.a[[th of 6,
bo Giainbed V’F s T o b. Ham "J r
b= b Gpen
 Gobo @) (= remind)
ackern ovlpal V¥

CL‘Q[[&h b)
L= b G‘,m all Canm,Lm.L:k
: Gobo @) (= newind)™"

£d Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

?‘ﬁvcu == cﬂlf \/;,F b& a_malao«A Vewjie, and 2R w.
Proofofthe zero knowledge Wank Fo show Fhat o pv} Sm« WRERS

aco| = ARwW 1\/ 5““:‘

th C(curw\ 2 imvvl":e Mcg\:k\ePMv
cpmml'uhlu
L}'\‘; _ 4. S A

¥
; ,m(x\ gugss challes Vv
f / Peck aam-lom’n'; S 4

@ b <——{'ol3 ﬁr;‘fdﬁﬂyy one (Comm (,n_)l Compm
g b (o ,unuJ/e‘L
Rrck Agmdom T, }4 A e
C Comm (1), Comm (gﬂﬂ %
to glmlqueé \/’F abkzu]
CL‘Q[[&h b]
L= b G‘,m all Canm,Lm.L'

 Goko @) (= newind)*"

£d Colisson | 35

t g,-mq_lq,[’{‘L V,E ou’a‘."’l
Challen b. Hlam Fh s} 6,
I \9 = (E/: Gpm
¢ Goto @ (- Aawind)
ackern, oulpul V¥

) rov?

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

cﬂ]f V¥ be a mmalicionn V&«/M,. and 2R uw.
Proofofthe zero knowledge Wank Fo show Fhat o pv} Sim WRERS

Sim

G;m PW = va,\/& A

"’ Clacm 2 el we recove v
Lovm ml’ LALI{M

Guess challes %V* 5,'\\; 4. o
?lck /laM‘l°"“‘ S€

(comm (’I’l’) Copmn (:

lm(j'_‘,w

1
t Slmla}{(i \/’F H’am

C Comm (1), Comm (Gw“ y
to Slmlq.{feé \/‘F ,,Iplrau,
CL‘Q[[&h b.
b= ‘» . Gpm al Canm.Lm.L'A
: Ga © @ (/lZWmcl)kav

~Léd Colisson | 35

- Lp
4 @ (/‘E.le)cl)
ek ovlpal v

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

~ cﬂlf \/”F be a amaliciown V&«/J,. and 2R w.
Proofofthe zero- knowledge Wank Fo show Fhat o pv} Sim WRERS

E ‘ - aew 1\/ 5““3
GM‘M* Clwm 2 ir:::{;e Mm\:k‘ePMv’L

}AE 1: am gtk of 6,
b=b. Gpen :
60“0 @ (= /lEwacl)

nm(:rﬂ

@ Prck aomdom T, semd
(Comm ('Tr) Comm (G n
l’a S’M"IPCJ V’F ng&q

Challeng, |

T fas T bond W indepudpeh

b o

§ &é‘l\o b G‘,m a,”%anm#m.&’
Ga“a (= ’lZWmcl)\—o\:,

£d Colisson | 35

ki, oul(‘ud' vE

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

GCM &= cﬂ[’ V¥ be a mmalicionn V&«/M,. and 2R uw.
/
Proof of the zero- knowledge Wank Fo show Fhat o pv} Sim WRERS
XX w a, 5
Comm . PW = n_ng-,\le im
Y Z? A i o Clacm 2 unV? we 12V @
See» - v J
S rm(:tl1

@ Prck aomdom T, semd
(Comm ('Tr) Comm (G n
Yo Simulakel V’F obkacn

C
”&?(bﬂ \Aamé b)l"l&-z

th o
JIE o<t MM

Mk«.vh auypuk \/"<

ur\ori-t-t»u""’cl (/\)/(_(X xl ‘}q)
(X = =x) when
promd K indepomdant)

~Léd Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

~ cﬂlf \/”F be a amaliciown V&«/J,. and 2R w.
Proofofthe zero- knowledge Wank Fo show Fhat o pv} Sim WRERS

- aew 1\/ 5““3
CMM* éﬁ ~ C(curw\ 2 irf\:(;e Mm\:b&PMWL

Rrck ombom T, semd

(comm (‘D’) Comm (G ﬂ

{’a SIMlq_L($ V Dbb‘,‘ < w a2,

Chaleoge b =N
bt = v 2V
b=0 V¥

GPM all commtmek Yo V

prn HMPLVL\ d} 6 o V

aekrn oubgak o} v ¥

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

- cﬂlf \/”F be a amaliciown V&«/J,. and 2R w.
Proofofthe zero- knowledge Wank Fo show Fhat o pv} Sim WRERS

- aew 1\/ 5““3
CMM* éﬁ ~ C(curw\ 2 irf\:(;e Mm\:b&PMWL

Rrck ombom T, semd

(comm (‘D’) Comm (G ﬂ

{’a SIMlq_L($ V Dbb‘,‘ < w a2,

Chaleoge b =N
bt = v 2V
b=0 V¥

GPM all commtmek Yo V

prn HMPLVL\ d} 6 o V

aekrn oubgak o} v ¥

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

v . A of -
?J' s ilf \/jF \ga a ME—['CWA V'”«/«Ja, and 2R w.
Proof of the zero-knowledge: Wanb Fo shoew Fhe HPOS} S"Mv* <\
L w x

Comm
Y e—"’t> o S{m« , m Ao’un&ﬁ
Gpes, %
- Simu‘?a.V& @_aLC,L\ /Lauﬂ\cL on2

103 one [ﬂLwi'\A lrs Hu;
W?-ﬂmhj oj H\.z Cuvk@ﬂ\" rouné)

O

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path
Shytly eatin oo,

Proof of the soundness: /’) brove %'SM“SS of 4 Ui assumity slebshied lm;'?

Léo Colisson | 36

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path
517 71%‘« 7Aoo

Proof of the soundness: /1) boove 4 7 Sotdness of 4 Atnd assum vy shekshicef lm.i

Con MLAA c\h o aSSuane ND'H_SMA
—_— a

Léo Colisson | 36

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

sl 7 easi’en /i-ao

Proof of the soundness: /’) brove %'SM"CSS o 4 Aotmd asseming Swfglm‘? lm."?
Cm\ﬁ:m&‘c\({m: aSSarne Non.SMA- Then S ?/\f amd a Mon - Hamm (\/0"“"""\

— qupat
i G sV BT <V, 76> = T
Fa P p (622 >

4
G 2

Léo Colisson | 36

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

sl 7 easi’en /i-ao

'shr«? la».,(..

. bk
Proof of the soundness: /’) brove % - Sotdness of 4 Lot assuniig 3 5

Cm\ﬁ:m&‘c\({m: aSSuine NoTj.SMA- Then 32 ?/yz\z/mc; a don — Hamu‘(\/O"u'“"'\

—= aVpa
aph G sV, = Yo [:(\/(61)/?* > =< A
ef ? p (63> =T<1x Z

G *
«WLOE, we can asSee Feee b (Pa GW\A /P,;'r

\/ ® e deleyminishic. (fuke max over Aamdomness) .

R [Sl’ﬂa'f(f? a/ ?KKG): 'g;;ﬂmgfﬁ’nﬁfﬁ

. 69%4 Youbpal when .1

Léo Colisson | 36

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

sl 7 2asien froo

shicef la».,,(..

v stk
Proof of the soundness: ’1) Ceove 2—50’*’4“59 of é’wm\é assumivg 3 ;

Cmvfrm&'cV:'W: aSSarre NoTj.SMA - ’I’hm S ?/y t\’/""é a Mon — Ha/wu‘(\(olfu'a»\

—= aVpa
aph G sV, = Yo [:(\/(Ga)/?* > =< A
ef ? p (63> =T<1x Z

G *
«WLOE, we can asSee Feee b (Pa GW\A /P,,q‘r

\/ ® e deleyminishic. (fuke max over Aamdomness) .

ce e \{‘50 Sl’aahf} a/ ?Kfé);: :é";;ﬂmgfvi’nﬁfﬁ

. 69%4 Youbpal when b21

Bj JeJ f 23(?&_%03 fw:"j) S ince VI* s

CLzk&""’""-""'s)"") A, e(a,l.imé 2, £€$oT. Since e) iL , we have a,= a, = 4, ie \/“}“’7‘ qxeF)'

Léo Colisson | 36

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

sl 7 easi’en /i-ao

'shr«? la».i..

. bk
Proof of the soundness: /’) brove % - Sotdness of 4 Lot assuniig 3 5

Cm\ﬁ:m&‘c\({m: aSSuine Non.SMA- Then 32 ?/yz\z/mc; a don — Hm‘(\/o"u'wv\

—= aVpa
aph G sV, = Yo [:(\/(Ga)/?* > =< A
ef ? p (63> =T<1x Z

G *
«WLOE, we can asSee Feee b (Pa GW\A /P,,{

\/ ® e deleyminishic. (fuke max over Aamdomness) .

R | (o Sl’ﬂa'/(f? o% ?Kfé):z :Cé’;;:“g{ifxfiaﬁ

o 69%4_ ’Sw&—fqi’ when v=1

Bj JeJ f 23(?&_%03 fw:"j) S ince VI* s

A”'k&'“"’”'-""s)'"‘) A, e(a,l.imé 2, £€$oT. Since e) iL , we have a,= a, = 4, e \/“}“’7‘ q“"F)'
Commm ;s sheifs\ncq_“ bia A,‘y => avuj one ﬁo.ssu'bé ofcnm‘y which is bolh 2 Va/p"é Emb‘}‘””

A 6 (Vacceps uhemyyz 0) and cmtens 2 Hamallonian palh (Vacceds wh"(bcfl)p'gmnmzﬁ)

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the soundness: /l) Ceove g - Souduess of 4 Aund assumivq S@k‘(@? la».i;

C Vnm&‘c\({m: aSSuine Non.SMA- Then 3T, amd a mom - HW‘(\/""“‘“’"\
o G sV BT L oud P¥ "f'ﬁwx
a SV, iz 7 6)/ 6)> = 1L) —
7or G s g < g

& X
vt WLOé’/ we Can asSSeme H"!l’ (Pa GW\A /P,,
\/ ® e deleyminishic. (fuke max over Aamdomness) .

S, Sl’ﬂa'/(f? o% ?Kfé):z .C@o;;:h%{‘}fnﬁf{;

° 6?*”4_ 'Sw&'f«.i’ when v-1

Bj JeJ f 23(?&_%03 fw:"j) S ince VI* s

Aﬂ-k&nwn;,,;s)','c) “'ueqa,l%mé a, -éfa,l}, Since e) iL , we Lv(a,=a, = /.{—, e V,zlw?d Qccepl'-
Comm is SMU/ bm&fy -> e ‘} Gpom, om Cpen, have s donbica) Dpem’% r“{”ri«\
2"4_‘,.—““ « Gpom, amd 6;:1/«4_ have = ape[gg\t'lggﬁ — Rhsand (commiViment ;s binding) G shab-bindey

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Proof of the soundness: 2> T M Aowads p
Pl 2xch Aound Yhe \/e,u/ ¢ cecepls wilkh ,’AoLac Z
[

[CaYD“Q-y laab sl AA)
> L <V, P> = aceqph] ¢ 4
2

()

Léo Colisson | 36

blenderpoint
{"type": "addMe"}

Proof of knowledge

How can we be sure that the prover “knows” the secret?

E.g.: Fory € Z;, I can convince you that there exists x such that g* =y (e.g. g
is a generator of Zy, i.e. for all x dividing p — 1, g* # 1), but I may not always
know x (hardness of discrete log).

proof of membership # proof of knowledge

How to define this notion formally?

Léo Colisson | 37

blenderpoint
{"type": "addMe"}

Proof of knowledge

/‘\D khowsn w y:we Camn eKk‘acl’)
Y‘a""\ Y}‘(L _SO'LLVCL Cocle_ s} K‘t)

echaclor
(_,g 6:> ljl/ r’? CLQfeMA on W

blenderpoint
{"type": "addMe"}

Proof of knowledge

/‘\D‘(“‘Qmws” w }we coan exlack o
Ya"’\ Ve 'Sowvca cocle o e

eﬁk\ac]’a\f
E 6‘ DL flag depend on 0

/)?b Cahlﬂo\/ be, ku,(.z V“? (OH%VWIS»Q FoSS)l?ZQ_ Yo
Qj/:u an\!g solve NP r’lobems‘)

Léo Colisson | 38

blenderpoint
{"type": "addMe"}

Proof of knowledge

/‘\D‘(“‘Qmws” w }we coan exlack o
Ya"’\ Ve 'Sowvca cocle o e

eﬁk\ac]’a\f
E 6‘ DL flag depend on 0

/)?b Cahlﬂo\/ be, ku,(.z V“? (OH%VWIS»Q FoSS)l?ZQ_ Yo

4 :u@n\! solye NP (lobems
(\? ——é/’\//uu% ov c,o'vacmf e

Léo Col

blenderpoint
{"type": "addMe"}

Proof of knowledge

Definition (ZKPoK)

A ZK protocol for alanguage in NP (with relation R) is said to be a proof of
knowledge (ZKPoK) (with error x(\)) if there exists an efficient algorithm
& given rewindable oracle access to P, called an extractor, such that for

any x and prover P*, if Pr[(P*(x), V(X)) = T] > &(|x]), £ (x) returns a
poly(\) (x|)

valid witness w (xRw) in time B[P 00,V 00V =T T=A(D

Why isn't it contradicting the ZK property?

Léo Colisson | 39

blenderpoint
{"type": "addMe"}

Proof of knowledge

Definition (ZKPoK)

A ZK protocol for alanguage in NP (with relation R) is said to be a proof of
knowledge (ZKPoK) (with error x(\)) if there exists an efficient algorithm
& given rewindable oracle access to P, called an extractor, such that for
any x and prover P*, if Pr[(P*(x), V(X)) = T] > &(|x]), £ (x) returns a

valid witness w (XRw) in time g (P*()E))c,)‘l;((;\)))(fp]fm(|x|) /k_;f\/r,m!y be s Yuivia

Why isn't it contradicting the ZK property?

Léo Colisson | 39

Wa.'!/rj p’)an[é-j YK
77—

= =

Ny~
~—

blenderpoint
{"type": "addMe"}

Proof of knowledge

Definition (ZKPoK)

A ZK protocol for alanguage in NP (with relation R) is said to be a proof of

knowledge (ZKPoK) (with error x(\)) if there exists an efficient algorithm

& given rewindable oracle access to P, called an extractor, such that for

any x and prover P*, if Pr[(P*(x), V(X)) = T] > &(|x]), £ (x) returns a
poly(\)(|x]) \\/\/r,'cqe/ be s ¥ Yuivia

= =

valid witness w (XRw) in time BTV =TT RRD

Wa.'!/rj p’)an[é-j YK

(24
q q 8 nf @7 I} We canm do much
Why isn't it contradicting the ZK property? bete = we find w]

EREN
~—

<]

Léo Colisson | 39

blenderpoint
{"type": "addMe"}

Proof of knowledge

Definition (ZKPoK)

A ZK protocol for alanguage in NP (with relation R) is said to be a proof of
knowledge (ZKPoK) (with error x(\)) if there exists an efficient algorithm
& given rewindable oracle access to P, called an extractor, such that for

any x and prover P*, if Pr[(P*(x),V(x)) = T] > &(|x]), £’ (x) returns a
poly(M) (1x])

valid witness w (xRw) in time B[00,V (V=T T=~ (X))

Why isn’t it contradicting the ZK property?
The extractor can rewind P* etc

Léo Colisson | 39

blenderpoint
{"type": "addMe"}

ZK proof of the Hamiltonian path

Theorem (ZK-Ham

The ZK protocol for the Hamiltonian path is a zero-knowledge proof of
knowledge.

Proof idea: the extractor plays the protocol honestly with b = 0, rewinds P*, and then sends
b = 1. This way it gets both a Hamiltonian path and =, so it can revert = on the Hamiltonian
path to recover a Hamiltonian path on G.

When sending 2 challenges is enough to recover the witness = called special soundness

Léo Colisson | 40

blenderpoint
{"type": "addMe"}

Reducing interactivity

blenderpoint
{"type": "addMe"}

Parallel repetition

For efficiency, tempting to repeat the ZK protocol for Hamiltonian path in
parallel instead of sequentially.

© Wrong in general: there exist ZK protocols secure when composed
sequentially, but not in parallel [Feige, Shamir STOC 90] (see next slide)

® Unknown for the protocol for Hamiltonian paths

© Known for this protocol if the challenges of the verifier are random
(semi-honest verifier) = Fiat-shamir’s construction has this property!

Léo Colisson | 42

blenderpoint
{"type": "addMe"}

Parallel repetition

Theorem 3.2: There exists a zero knowledge Can you prove that this scheme is NOT

proof of knowledge system (P,V) for the discrete log, Zero-KnowIedge when Composed in
w.hich when execut;ed twice in patallel discloses the paraIIeI twice?
discrete log of the input.
Proof(sketch): Let (P, V) be any zero knowledge
proof of knowledge system for the discrete log prob-
lem (e.g. sce [20]). We construct (P,V) directly from
(P,V).

1. On input (p,9,2), V tries to randomly guess w,
the unique discrete log of z, satisfying g% = =
mod p. If V succeeds (with negligible probabil-
ity), he sends 1. Otherwise he sends 0.

¥

. If V sent 1 in move 1, he now proves to P in zero
knowledge that he knows w, using the protocol
(P, V) with reversed roles. If P is convinced by
V’s proof (this is expected to happen with over-
whelming probability with truthful P and V), he
sends w to V, showing that he too knows w, and
V accepts. If P is not convineed by V’s proof, P
stops and V rejects.

3. If V sent 0 in move 1, P proves his knowledge of
w using the standard proof system (P, V).
Léo Colisson | 43

blenderpoint
{"type": "addMe"}

Parallel repetition

Theorem 3.2: There exists a zero knowledge
proof of knowledge system (P,V) for the discrete log,
which when executed twice in parallel discloses the
discrete log of the input.

Proof(sketch): Let (P, V) be any zero knowledge
proof of knowledge system for the discrete log prob-
lem (e.g. sce [20]). We construct (P,V) directly from
(P,V).

1. On input (p,9,2), V tries to randomly guess w,
the unique discrete log of z, satisfying g% = =
mod p. If V succeeds (with negligible probabil-
ity), he sends 1. Otherwise he sends 0.

¥

. If V sent 1 in move 1, he now proves to P in zero
knowledge that he knows w, using the protocol
(P, V) with reversed roles. If P is convinced by
V’s proof (this is expected to happen with over-
whelming probability with truthful P and V), he
sends w to V, showing that he too knows w, and
V accepts. If P is not convineed by V’s proof, P
stops and V rejects.

3. If V sent 0 in move 1, P proves his knowledge of
w using the standard proof system (P, V).

Léo Colisson | 4

Can you prove that this scheme is NOT

Zero-Knowledge when composed in
parallel twice?

The protocol (P,V) is a complete and sound (per-
fect) zero knowledge proof of knowledge.

Consider now two executions, (P, V) and (P, V)
in parallel. A cheatmg verifier V can always extract
w from Py and P; using the following strategy: In
move 1, V sends 0 to P, and 1 to P;. Now V has to
execute the protocol (P, V) twice: Once as a verifier
talking to the prover Py, and once as a prover talking
to the verifier Py. This he does by serving as an inter-
mediary between P) and Pg, sending . Py’s messages to
Py, and P,’s messages to P;. Now P, willfully sends
wtoV. o

Remark 1: Assuming the intractability of the dis-
crete log, Theorem 3.2 proves that zero knowledge is
not preserved under parallel composition.

Remark 2: We emphasize the importance of the
fact that z has a unigue witness w. Otherwise a single
execution of the protocol (P,V) would not be zero
knowledge, as it might reveal which of the witnesses
for = P is using. This fact cannot be deduced by a

fimulator M just by observing z and V.

blenderpoint
{"type": "addMe"}

Sigma protocol

Léo Colisson | 44

blenderpoint
{"type": "addMe"}

Sigma protocol

blenderpoint
{"type": "addMe"}

How to make the protocol non-interactive (NIZK): Fiat-Shamir transform
© Run the protocol in parallel
® Replace the challenge with the hash of all commitments of first phase

- IAT- SHANZIR:

Léo Colisson | 45

blenderpoint
{"type": "addMe"}

7 Is it still secure if we hash the challenges one by one?
®

Léo Colisson | 46

blenderpoint
{"type": "addMe"}

Fiat Shamir

How to prove security of the Fiat Shamir transform?

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Fiat Shamir

C{auym . Jmpess ible

: : : 5
How to prove security of the Fiat Shamir transform? Con p(m'“ oode])

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Fiat Shamir

C{auym J rmposs ibe

. , . 5
How to prove security of the Fiat Shamir transform? (ion plesi mode])

Inthe nown- .'r\\/CVacln've Ceee : @f—»
T/L

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Fiat Shamir

C{auym J rmposs ibe

. , . 5
How to prove security of the Fiat Shamir transform? (ion plesi mode])

Inthe nown- .'r\\/(Vacln've Ceee : @f—»
x T/L

= Z2k-406) &5)Bj
?

Care d feliccovs V¥

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Fiat Shamir

C{au'rm . Jopmpess e

: , : 5
How to prove security of the Fiat Shamir transform (o P("“'“ omode])

Inthe nown- m\/CVarclnve Ceene : @,_»
;r_é.f

= 2Zk=- 40 / ﬁj
C‘:::(L' ;pf?:llqu$ V*
“EFelod

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Fiat Shamir

C/au'rm . Jopmpess e

: , : 5
How to prove security of the Fiat Shamir transform (o P("“'“ omode])

Inthe non-inVeyvachive ceoe: @f—»
= ZK_EG/ {ﬂ
Cenki el G

CW i} feliccovs V*

e. 6" k Se @_ﬂ}j o~ ’

‘l’(—- corvefl, psc

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Fiat Shamir

C/au'rm . Jopmpess e

: , : 5
How to prove security of the Fiat Shamir transform (o P("“'“ omode])

In the nown- m\/CVac[nVe Ceene : @,_»
=> ZK_EG/ {ﬂ
Canbi Cocfan

CW i} feliccovs V*

e. 6" k Se @_ﬂ}j o~ ’

‘l’(—- corvefl, psc

> Sosnliass (jj @

I Soumdngs

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Fiat Shamir

Clacm: Trpess ibe

.) . ,
How to prove security of the Fiat Sham|£ transforms? Con P(mlw o))

Inthe nown- .'r\\/CVarc[n've Ceee : @f—»
T/L

~ &k 30/]
(’a«lﬂ j’of?ﬂ,ms V*/\

ﬂ . (‘}1:7

‘l’(—- ot

¥
=> Souméues‘s)d? Z ‘ @.‘n Pmb.a.,pm-} P = G we have

e S’Mluj

R

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Fiat Shamir

Clacm: Trpess ibe

.) . ,
How to prove security of the Fiat Sham|£ transforms? Con P(mlw o))

Inthe nown- .'r\\/CVarc[n've Ceee : @f—»
gﬂ_é.ﬁ

% /L
= Zk- 306/ M 5
C?:‘L'C‘;JJ’Z"%vsv*/ (GJ
" :(f | = (”}Ej

‘l’(—-mv
¥
=> Souméues‘s)d? Z ‘ @.‘n Pmb.a.,pm-} P = G we have

L& Soumdugs \’E’?@
L

Léo Colisson | 47 \

blenderpoint
{"type": "addMe"}

Fiat Shamir

Clacm: Trpess ibe

.) . ,
How to prove security of the Fiat Sham|£ transforms? Con P(mlw o))

Inthe nown- .'r\\/CVarc[n've Ceee : @f—»
gﬂ_é.ﬁ

% /L
= Zk- 306/ M 5
C?:‘L'C‘;JJ’Z"%vsv*/ (GJ
" :(f | = (”}Ej

‘l’(—-mv
=> Souméues‘s)d? Z ‘ @.‘n Pmb.a.,pm-} 07 = 67 we have

_LK Sou«luj @’7
L

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Fiat Shamir

How to prove security of the Fiat Shamir transform?
Solutions:

e Consider the Random Oracle Model
e The simulator can reprogram the oracle

cLa.”&w}l

6’

e (f/(namAOM Cl\é qo/]’gy‘
. gwmye Camm:\(vmemlfs Comm aﬁfmy d«uzﬂ@g/s w,-” bc clt

0 lﬁecozaﬂhl F((CQMM\ I= C_\/L [ﬂ

. Gp&w\ Like IJ, Llﬂql/lﬁjw = Ck'to.l[:'(ap@*\ch
(Camn—-, Gp&"ch) _— \/

Léo Colisson | 48 \“/

X

blenderpoint
{"type": "addMe"}

Universal Efficient Simplicity Post-quantum

Hamiltonian path v X X v
Specialized approaches X v Y v Depends
ZK-SNARK v v X
v X

ZK-STARK v

X X
X v

Léo Colisson | 49

blenderpoint
{"type": "addMe"}

Hav ¥ REDUCTFONS
(" KARP REDUCTIONS”)

P —> SAT = Ham,

Universal Efficignt Simplicity Post-quantum

Hamiltonian path v X v
Specialized approaches X v Y v Depends
ZK-SNARK v v XX X
ZK-STARK v v XX Y

Léo Colisson | 49

blenderpoint
{"type": "addMe"}

Hav ¥ REDUCTFONS
(" KARP REDUCTIONS”)

P —> SAT = Ham,

Universal Efficignt Simplicity Post-quantum

Hamiltonian path v X v
Specialized approaches X v Y v Depends
ZK-SNARK v v XX X
ZK-STARK v v XX Y

> CF CoURSE VAVNESSA

Léo Colisson | 49

blenderpoint
{"type": "addMe"}

More efficient authentication &
signature protocols

blenderpoint
{"type": "addMe"}

Zero-Knowledge proofs for discrete logarithm (DL)

Specialized solution: I know x such that g* =y (operations in Zy or arbitrary

cyclic group G).

ZK for the discrete logarithm (DL)

Alice(p, g.y,X) Bob(p.g.y)
r&z R=¢g

b b & {0,1}
S:=(r+bx) mod (p-1) S

return g° = Ry?

Prove the correctness.

Léo Colisson | 51

blenderpoint
{"type": "addMe"}

Zero-Knowledge proofs for discrete logarithm (DL)

Specialized solution: I know x such that g* =y (operations in Zy or arbitrary

cyclic group G).

ZK for the discrete logarithm (DL)

Alice(p, g.y,X) Bob(p,g.y)
r&z R=¢g
b $
[gpfl = 1 (Fermat’s little thm) b © {07 1}
S:=(r+bx) mod (p-1) S

return g° = Ry?

Prove the correctness.

Léo Colisson | 51

blenderpoint
{"type": "addMe"}

Zero-Knowledge proofs for discrete logarithm (DL)

Specialized solution: I know x such that g* =y (operations in Zy or arbitrary

cyclic group G).

ZK for the discrete logarithm (DL)

Alice(p,g,y, x)

Bob(p, g.y)
ré&z, R=g
b $
[gp*1 = 1 (Fermat’s little thm) b < {07 1}
S:=(r+bx) mod (p-1) &

>

return g° = Ry?

Prove the correctness.

Léo Colisson | 51

blenderpoint
{"type": "addMe"}

Zero-Knowledge proofs for discrete logarithm (DL)

. ? :’Dn'}ml’g [y

Léo Colisson | 52

blenderpoint
{"type": "addMe"}

Zero-Knowledge proofs for discrete logarithm (DL)

. ? :’Dn'}ml’g [y

blenderpoint
{"type": "addMe"}

Zero-Knowledge proofs for discrete logarithm (DL)

. ? :’Dn'}ml’g [y

Léo Colisson | 52

blenderpoint
{"type": "addMe"}

Zero-Knowledge proofs for discrete logarithm (DL)

Léo Colisson | 52

blenderpoint
{"type": "addMe"}

Zero-Knowledge proofs for discrete logarithm (DL)

Léo Colisson | 52

blenderpoint
{"type": "addMe"}

Zero-Knowledge proofs for discrete logarithm (DL)

Prove that this protocol is:

7 * ZK

° * sound
¢ special sound

Léo Colisson | 53

blenderpoint
{"type": "addMe"}

Schnorr signature

Problem of the above protocol: need n rounds to have security ;. Not very
efficient.

Schnorr signature = 1 round without (quite inneficient) Fiat Shamir!

= Idea: more than 2 challenges.

Léo Colisson | 54

blenderpoint
{"type": "addMe"}

Schnorr signature

Kept by some trusted authority, g¥ =y
Schnorr authentication

Alice(p, g.y, X)

Bob(p.g.y)
ré&z, R=g
¢ c& 7y
S:=(r+c¢x) mod (p—1) 0

return ??? =777

Find the verification procedure.

Léo Colisson | 55

blenderpoint
{"type": "addMe"}

Schnorr signature

Kept by some trusted authority, g¥ =y
Schnorr authentication

Alice(p, g.y,X) Bob(p, 8.y)
ré&z, R=g

¢ cé& 7y
S:=(r+c¢x) mod (p—1) o

return g° < Ry°

Find the verification procedure.

Léo Colisson | 55

blenderpoint
{"type": "addMe"}

Schnorr signature

This allows someone to check if we interact with Alice, but two issues:
e this is interactive
* not a signature for now

= Solution: Fiat-Shamir (one round) where the hash is based on the message
to sign and commit.

Léo Colisson | 56

blenderpoint
{"type": "addMe"}

Schnorr signature

Schnorr signature

Let H: G x {0,1}* — Zj be a hash function, m a message to sign and
y = g¥ such that x is kept secret by Alice, and y is public.

Alice(p,g,y,x,m) Bob(p,g,y,m)
ré&z,

R=g"
c:=H(R,m)

S:=(r+cx) mod (p—-1) (R,s)

return g° = hy#®m

Léo Colisson | 57

blenderpoint
{"type": "addMe"}

Schnorr signature

Schnorr’s signature is used in real life, e.g. in the Bitcoin protocol (group:
secp256k1 elliptic curve) to replace ECDSA:

* Provably secure: strongly unforgeable under chosen message attack
(SUF-CMA) in the ROM assuming hardness of DL

e Can be generalized to sign a message collaboratively exploiting
linearity

https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

Léo Colisson | 58

blenderpoint
{"type": "addMe"}

https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

Goldreich-Levin construction

blenderpoint
{"type": "addMe"}

Goldreich-Levin

Earlier: how to obtain bit commitment from one-way permutations:
e f:{0,1}* —» {0,1}*
e p:{0,1}* — {0,1} hard-core predicate
(hard to guess p(x) given f(x), exists thanks to the Goldreich-Levin
theorem)
* xec{0,1}
Commit(x,r) = (f(r), p(r) &X), Open((y,b),X,T) = ((v,b) = (f(r), p(r) & x))
(permutation needed for (statistical) binding, otherwise we need something
like collision resistance)

Léo Colisson | 60

blenderpoint
{"type": "addMe"}

Goldreich-Levin

Earlier: how to obtain bit commitment from one-way permutations:
e f:{0,1}* —» {0,1}*
e p:{0,1}* — {0,1} hard-core predicate
(hard to guess p(x) given f(x), exists thanks to the Goldreich-Levin
theorem)
* xec{0,1}
Commit(x,r) = (f(r), p(r) &X), Open((y,b),X,T) = ((v,b) = (f(r), p(r) & x))
(permutation needed for (statistical) binding, otherwise we need something
like collision resistance)

Léo Colisson | 60

blenderpoint
{"type": "addMe"}

Goldreich-Levin

Haqd Yo invea V 7~ Mrlhr'rma,p a}smfha'\

e

G W |

Léo Colisson | 61

blenderpoint
{"type": "addMe"}

Goldreich-Levin

Ha,\& Yo (nvea \/

e

G -

[9 /\Jb Seme \Oiys mae not be Seazl's:
- -

. = b (| SHACx)
g.g. f(\au x)

Léo Colisson | 61

blenderpoint
{"type": "addMe"}

Goldreich-Levin

HGAA Yo (nvea V

e

G -

> %b: Seme bits ma nol' be Secwels:
=
Eg f{\au x)= bl SHA(x)

j(b!lac) Peaks b bulis owF
= vad commlomed scheme

Léo Colisson | 61

blenderpoint
{"type": "addMe"}

Goldreich-Levin

We camn hide ome bV

Ha.d Yo (nvea V

4 GL : 4
H‘léi‘y“ FUV'CJ\'OM

O

[9 b: Seme bivs wma nol' be Secwels:
=
Eg J(\all x) = bl SHA(x)

jfbnx) Doaks b bubis OWF
= vad commlomed scheme

Léo Colisson | 61

blenderpoint
{"type": "addMe"}

Goldreich-Levin

Haqd Yo |'nV&\‘/ We camn LAAz one Jm‘f

v GL /

N (L, Conction
.

[9 b Seme biYs ma not be Secwels
= ;
Eg f(\”ll)= bl SHA(x)

Jpna0) Doaks b bubis OWF

Hofe P«za‘s
= ha dcorve bit

Léo Colisson | 61

blenderpoint
{"type": "addMe"}

Goldreich-Levin

Ha/\,l ceNe f Vd t‘(a}Q

blenderpoint
{"type": "addMe"}

Goldreich-Levin

Theorem (Goldreich-Levin)

Let f be an arbitrary one-way function, and let f'(x,r) := (f(x),r) where
|x| = |r|. Let p(x,T) == ®;(x;r;). Then p is a hardcore predicate for f”.

Proof sketch: By contradiction: For simplicity, assume there exists A(f’(x)) that always
guesses g(x) correctly. Then, we can use A to invert f

Show how A can be used to recover x from y := f(x).

Léo Colisson | 62

blenderpoint
{"type": "addMe"}

Goldreich-Levin

Theorem (Goldreich-Levin)

Let f be an arbitrary one-way function, and let f'(x,r) := (f(x),r) where
|x| = |r|. Let p(x,T) == ®;(x;r;). Then p is a hardcore predicate for f”.

Proof sketch: By contradiction: For simplicity, assume there exists A(f’(x)) that always
guesses g(x) correctly. Then, we can use A to invert f

Show how A can be used to recover x from y := f(x).
We can recover x bit-by-bit:

© Firstbitis A(y,10...0) =g(x,10...0) =x3 x 1+ X3 x 0+ ... Xn x 0 = X3
@ Second bit is A(y,010...0), ...
e ..

@ Last bitis A(y,0...01) O

Léo Colisson | 62

blenderpoint
{"type": "addMe"}

Goldreich Levin

Full proof: see Foundation of Cryptography, Volume 1, Oded Goldreich.

Léo Colisson | 63

blenderpoint
{"type": "addMe"}

