
Crypto Engineering 2024
Security definitions & proof methods

Léo Colisson Palais

leo.colisson-palais@univ-grenoble-alpes.fr
https://leo.colisson.me/teaching.html

blenderpoint
{"type": "addMe"}

mailto:leo.colisson-palais@univ-grenoble-alpes.fr
https://leo.colisson.me/teaching.html

Some references

• Framework of this course:
The Joy of Cryptography, Mike Rosulek
https://joyofcryptography.com/
• Introduction to Modern Cryptography, Jonathan

Katz & Yehuda Lindell
• Foundation of Cryptography, Oded Goldreich

Léo Colisson | 2

blenderpoint
{"type": "addMe"}

https://joyofcryptography.com/

Symmetric cryptography

With me:
• 5 CMs, 3 TDs
• Symmetric cryptography, in particular:

• Symmetric encryption & block ciphers
• Authentication (MAC)
• Hash functions & specificity of password hashing

• Goals:
• Study security models
• See some constructions
• Analyse and prove their security
• See some bad ideas that you should NEVER DO

Léo Colisson | 3

blenderpoint
{"type": "addMe"}

Symmetric cryptography

With me:
• 5 CMs, 3 TDs
• Symmetric cryptography, in particular:

• Symmetric encryption & block ciphers
• Authentication (MAC)
• Hash functions & specificity of password hashing

• Goals:
• Study security models

Important to define them rigorously, otherwise,
easy to declare an insecure protocol secure.
Also important to understand how these definitions
influence the security guarantees

• See some constructions
• Analyse and prove their security
• See some bad ideas that you should NEVER DO

Léo Colisson | 3

blenderpoint
{"type": "addMe"}

Symmetric cryptography

With me:
• 5 CMs, 3 TDs
• Symmetric cryptography, in particular:

• Symmetric encryption & block ciphers
• Authentication (MAC)
• Hash functions & specificity of password hashing

• Goals:
• Study security models
• See some constructions
• Analyse and prove their security

Proofs guarantee security in a given attack model,
but remember, a proof is always a model!

• See some bad ideas that you should NEVER DO

Léo Colisson | 3

blenderpoint
{"type": "addMe"}

Symmetric cryptography

With me:
• 5 CMs, 3 TDs
• Symmetric cryptography, in particular:

• Symmetric encryption & block ciphers
• Authentication (MAC)
• Hash functions & specificity of password hashing

• Goals:
• Study security models
• See some constructions
• Analyse and prove their security
• See some bad ideas that you should NEVER DO

Léo Colisson | 3

blenderpoint
{"type": "addMe"}

Notations

Notation Meaning
x $← X x is obtained by sampling an element uniformly at random from the set X

y← A(x) If A is a (probabilistic) algorithm or a distribution, we run A on input x and store
the result in x

x ?
= y Returns 1 (true) if x equals y, 0 (false) otherwise

negl(λ) An arbitrary function f that is negligible (= smaller than any inverse
polynomial), i.e. ∀c ∈ N, limλ→∞ λcf (λ) = 0

poly(λ) A function smaller than some polynomials, i.e. ∃c ∈ N,N ∈ N,∀λ > N, f (λ) ≤ λc

?
Which functions are negligible?

A f (λ) = 1
2λ

B f (λ) = 1
λ1000

C f (λ) = 2− log λ

NB: negl(λ) + negl(λ) = negl(λ), negl(λ)× negl(λ) = negl(λ), poly(λ)negl(λ) = negl(λ)Léo Colisson | 4

blenderpoint
{"type": "addMe"}

Symmetric vs asymmetric cryptography

Symmetric encryption ̸= Asymmetric encryption
Both parties share the same

secret
One party has an extra secret

information (trapdoor that can be
used to invert a function easily)

Léo Colisson | 5

blenderpoint
{"type": "addMe"}

blenderpoint
{"type": "insertVideo","folder": "Video_bank/Teaching/Encryption/","filename": "symmetric_vs_asymmetric.mp4","stops": "35,143,178,200,293,368,469","nbFrames": "480","firstFrame": "","lastFrame": "","speed": ""}

Mini-activity

Activity: design your own private-key cryptosystem (2mn) that we will analyse
later, i.e.:
• Key-generation k ← Gen(1λ)
• Encryption c← Enck(m)

• Decryption m← Deck(c)

Léo Colisson | 6

blenderpoint
{"type": "addMe"}

Mini-activity

Activity: design your own private-key cryptosystem (2mn) that we will analyse
later, i.e.:
• Key-generation k

Key k ∈ K

← Gen(1λ)
• Encryption c← Enck(m)

• Decryption m← Deck(c)

Léo Colisson | 6

blenderpoint
{"type": "addMe"}

Mini-activity

Activity: design your own private-key cryptosystem (2mn) that we will analyse
later, i.e.:
• Key-generation k

Key k ∈ K

← Gen(1λ

Security parameter λ ∈ N in unary form:
Gen runs in poly time in the size of its input

)

• Encryption c← Enck(m)

• Decryption m← Deck(c)

Léo Colisson | 6

blenderpoint
{"type": "addMe"}

Mini-activity

Activity: design your own private-key cryptosystem (2mn) that we will analyse
later, i.e.:
• Key-generation k

Key k ∈ K

← Gen(1λ

Security parameter λ ∈ N in unary form:
Gen runs in poly time in the size of its input

)

• Encryption c← Enck(m Message m ∈M)

• Decryption m← Deck(c)

Léo Colisson | 6

blenderpoint
{"type": "addMe"}

Mini-activity

Activity: design your own private-key cryptosystem (2mn) that we will analyse
later, i.e.:
• Key-generation k

Key k ∈ K

← Gen(1λ

Security parameter λ ∈ N in unary form:
Gen runs in poly time in the size of its input

)

• Encryption c← Enck(m Message m ∈M)

• Decryption m← Deck(c
Ciphertext c ∈ C

)

Léo Colisson | 6

blenderpoint
{"type": "addMe"}

Symmetric vs asymmetric cryptography

Asymmetric encryption Symmetric encryption
No need to share secrets

(e.g. internet)
Need to share secrets

Stronger assumptions factoring, LWE. . .
(functions highly structured)

Weaker assumptions
(less structure)

Less efficient More efficient
No statistical security Statistical security possible

(but impractical)

⇒ Hybrid systems: combine both = best of both world (efficient + no secret
to distribute)

Léo Colisson | 7

blenderpoint
{"type": "addMe"}

Cryptography is not (just) encryption

WARNING

Cryptography is not just about encryption:
• cryptocurrency (bitcoin. . .)
• signature
• commitments
• multi-party computing (MPC)
• quantum money
• position verification
• zero-knowledge (ZK) proofs
• electronic voting
• . . .

Léo Colisson | 8

blenderpoint
{"type": "addMe"}

Impagliazzo’s worlds

Algorithmica P = NP (no hard problem)

One-Time Pad

Heuristica NP problems hard in the worst case, easy in practice (average)

Pessiland NP problems hard in practice, but no one way functions exist

Minicrypt One way functions exist, no public key cryptography

Commitments

Asymmetric cryptography
ZK-proofs Secret sharing

Cryptomania Public-key cryptography and trapdoor functions exist MPC
PKC

No (interesting) cryptography

Obfustopia One can make a program code unreadable Obfuscation

Big question (harder than P = NP): in which world are we?

Léo Colisson | 9

blenderpoint
{"type": "addMe"}

Impagliazzo’s worlds

Algorithmica P = NP (no hard problem)

One-Time Pad

Heuristica NP problems hard in the worst case, easy in practice (average)

Pessiland NP problems hard in practice, but no one way functions exist

Minicrypt One way functions exist, no public key cryptography

Commitments

Asymmetric cryptography
ZK-proofs Secret sharing

Cryptomania Public-key cryptography and trapdoor functions exist MPC
PKC

No (interesting) cryptography

Obfustopia One can make a program code unreadable Obfuscation

Big question (harder than P = NP): in which world are we?

Léo Colisson | 9

blenderpoint
{"type": "addMe"}

Impagliazzo’s worlds

Algorithmica P = NP (no hard problem)

One-Time Pad

Heuristica NP problems hard in the worst case, easy in practice (average)

Pessiland NP problems hard in practice, but no one way functions exist

Minicrypt
Our focus

One way functions exist, no public key cryptography

Commitments

Asymmetric cryptography
ZK-proofs Secret sharing

Cryptomania Public-key cryptography and trapdoor functions exist MPC
PKC

No (interesting) cryptography

Obfustopia One can make a program code unreadable Obfuscation

Big question (harder than P = NP): in which world are we?

Léo Colisson | 9

blenderpoint
{"type": "addMe"}

No absolute security

Since we don’t know in which world we are = no absolute security (except
One-Time Pad)⇒ always rely on some assumptions:

“Computational” assumptions Setup assumptions
= adversary cannot . . . = parties have access to . . .

Harness of factoring/elliptic curves Plain model
(broken against quantum computers) Common Reference String (CRS)

Learning With Errors Random Oracle (RO) model
Code-based Crytography

Existence of one-way functions (functions
hard to invert), pseudo-random

permutations. . .
Indistinguishable Obfuscation (iO). . .

Replacing RO with hash function = heuristic
(no proof that the protocol will still be secure)

Important to clearly state them and understand their implications!
Léo Colisson | 10

blenderpoint
{"type": "addMe"}

Security models

When designing a crypto system, we want to say:

“The protocol XXX is secure in the plain
Setup assumption

/CRS/RO model assuming YYY
Computational assumption

is hard.”

⇒We also need to define a security model (a.k.a attack model)
= expectations in term of security (e.g. the adversary should not learn the
message)

Léo Colisson | 11

blenderpoint
{"type": "addMe"}

Security models

When designing a crypto system, we want to say:

“The protocol XXX is secure
???

in the plain
Setup assumption

/CRS/RO model assuming YYY
Computational assumption

is hard.”

⇒We also need to define a security model (a.k.a attack model)
= expectations in term of security (e.g. the adversary should not learn the
message)

Léo Colisson | 11

blenderpoint
{"type": "addMe"}

Security models

When designing a crypto system, we want to say:

“The protocol XXX is secure
security model

in the plain
Setup assumption

/CRS/RO model assuming YYY
Computational assumption

is hard.”

⇒We also need to define a security model (a.k.a attack model)
= expectations in term of security (e.g. the adversary should not learn the
message)

Léo Colisson | 11

blenderpoint
{"type": "addMe"}

Security models

Easy to intuitively say what we expect, hard to find a good security model
that captures all possible unwanted behaviors:

E.g. for encryption:

?
Attempt 1: “Given an encryption of m, an adversary should not be able to recover
m”. Is this a good security definition? (if not, find a scenario where this could go
wrong)

A Yes
B No

Léo Colisson | 12

blenderpoint
{"type": "addMe"}

Security models

Easy to intuitively say what we expect, hard to find a good security model
that captures all possible unwanted behaviors:

E.g. for encryption:

?
Attempt 1: “Given an encryption of m, an adversary should not be able to recover
m”. Is this a good security definition? (if not, find a scenario where this could go
wrong)

A Yes

B No Recovering 3/4 of the message is already a big issue! E.g.
m = "?????????????, hence we attack tomorrow"

Léo Colisson | 12

blenderpoint
{"type": "addMe"}

Security models

?
Attempt 2: “Given an encryption of m, an adversary should not be able to recover
any bit of m”. Is this a good security definition? (if not, find a scenario where this
could go wrong)

A Yes
B No

Léo Colisson | 13

blenderpoint
{"type": "addMe"}

Security models

?

Attempt 2: “Given an encryption of m, an adversary should not be able to recover
any bit of m”. Is this a good security definition? (if not, find a scenario where this
could go wrong)

A Yes

B No Knowing which groups of bits are different already leaks a lot:

Léo Colisson | 13

blenderpoint
{"type": "addMe"}

NEVER DO THIS

AN ENCRYPTION MUST ALWAYS BE
NON-DETERMINISTIC!!!

NEVER USE A HOME-MADE ENCRYPTION,
IT WILL BE INSECURE!!!

Léo Colisson | 14

blenderpoint
{"type": "addMe"}

NEVER DO THIS

AN ENCRYPTION MUST ALWAYS BE
NON-DETERMINISTIC

Was it the case of your encryption algorithm?

!!!

NEVER USE A HOME-MADE ENCRYPTION,
IT WILL BE INSECURE!!!

Léo Colisson | 14

blenderpoint
{"type": "addMe"}

NEVER DO THIS

AN ENCRYPTION MUST ALWAYS BE
NON-DETERMINISTIC

Was it the case of your encryption algorithm?

!!!

NEVER USE A HOME-MADE ENCRYPTION,
IT WILL BE INSECURE!!!

Léo Colisson | 14

blenderpoint
{"type": "addMe"}

Security models

?
Attempt 3: “Given 2 random messages m0 and m1 (known to the adversary), an
adversary should not be able to tell if the message m0 or m1 was encrypted.”. Is
this a good security definition? (if not, find a scenario where this could go wrong)

A Yes
B No

Léo Colisson | 15

blenderpoint
{"type": "addMe"}

Security models

?
Attempt 3: “Given 2 random messages m0 and m1 (known to the adversary), an
adversary should not be able to tell if the message m0 or m1 was encrypted.”. Is
this a good security definition? (if not, find a scenario where this could go wrong)

A Yes

B No Good enough if we encrypt random messages. . .But in practice we
encrypt precise messages, say “Yes” and “No”, and it could be a very bad
encryption for these precise two messages while still being good on all
others.

Léo Colisson | 15

blenderpoint
{"type": "addMe"}

Security models

?
Attempt 4: “For all messages m0 and m1 (known to the adversary), an adversary
should not be able to tell if the message m0 or m1 was encrypted.”. Is this a good
security definition? (if not, find a scenario where this could go wrong)

A Yes
B No

The adversary should choose m0 and m1, but when? What can the
adversary use before choosing them? How to formalize this?

Léo Colisson | 16

blenderpoint
{"type": "addMe"}

Security models

?
Attempt 4: “For all messages m0 and m1 (known to the adversary), an adversary
should not be able to tell if the message m0 or m1 was encrypted.”. Is this a good
security definition? (if not, find a scenario where this could go wrong)

A Yes

B No This is actually too strong: when m0 = k and m1 = 0, the adversary
can just use m0 (i.e. k) to decrypt. And if we also require k to be sampled
afterm0 (so that m0 and k are independent), this is too weak: in practice,
the message may depend on k (e.g. after seeing a previous encryption).

The adversary should choose m0 and m1, but when? What can the
adversary use before choosing them? How to formalize this?

Léo Colisson | 16

blenderpoint
{"type": "addMe"}

Security models

?
Attempt 4: “For all messages m0 and m1 (known to the adversary), an adversary
should not be able to tell if the message m0 or m1 was encrypted.”. Is this a good
security definition? (if not, find a scenario where this could go wrong)

A Yes

B No This is actually too strong: when m0 = k and m1 = 0, the adversary
can just use m0 (i.e. k) to decrypt. And if we also require k to be sampled
afterm0 (so that m0 and k are independent), this is too weak: in practice,
the message may depend on k (e.g. after seeing a previous encryption).

The adversary should choose m0 and m1, but when? What can the
adversary use before choosing them? How to formalize this?

Léo Colisson | 16

blenderpoint
{"type": "addMe"}

Security models

So how to define a secure protocol/encryption?⇒ There is not one, but
multiple definitions of security (with different guarantees)
3 classes of security models:

Stronger models

General composability

Sequential composability

Game-based security

1: Game-based security = Fix a challenger (defines the security goals):

Challenger Adversary

Win/Lose

Secure if for any adversary, the probability of winning is “low”
(might be 1/2+ negl(λ) or 0+ negl(λ) depending on the game)

Léo Colisson | 17

blenderpoint
{"type": "addMe"}

Security models

So how to define a secure protocol/encryption?⇒ There is not one, but
multiple definitions of security (with different guarantees)
3 classes of security models:

Stronger models

General composability

Sequential composability

Game-based security

1: Game-based security = Fix a challenger (defines the security goals):

Challenger
m $← {0, 1}λ
k ← Gen(1λ)
c← Enck(m)

return m = m̃

Adversaryc

m̃

Win(=true)/Lose(=false)

Secure if for any adversary, the probability of winning is “low”
(might be 1/2+ negl(λ) or 0+ negl(λ) depending on the game)

Léo Colisson | 17

blenderpoint
{"type": "addMe"}

Security models

So how to define a secure protocol/encryption?⇒ There is not one, but
multiple definitions of security (with different guarantees)
3 classes of security models:

Stronger models

General composability

Sequential composability

Game-based security

1: Game-based security = Fix a challenger

Q: Is this challenger corresponding to the
“don’t learn m” (A) or “learn no bit about m” (B) security notion?

(defines the security goals):

Challenger
m $← {0, 1}λ
k ← Gen(1λ)
c← Enck(m)

return m = m̃

Adversaryc

m̃

Win(=true)/Lose(=false)

Secure if for any adversary, the probability of winning is “low”
(might be 1/2+ negl(λ) or 0+ negl(λ) depending on the game)

Léo Colisson | 17

blenderpoint
{"type": "addMe"}

Security models

So how to define a secure protocol/encryption?⇒ There is not one, but
multiple definitions of security (with different guarantees)
3 classes of security models:

Stronger models

General composability

Sequential composability

Game-based security

2 & 3: Composable frameworks = security based on a simulator that trans-
lates attacks on the real protocol to attacks on a functionality (trusted party)
in an ideal world, supposed to be secure by definition:

≈

Main frameworks: standalone security (sequential), Universal Composability
[Can10], Abstract Crytography [MR11,M12] (general)

Léo Colisson | 17

blenderpoint
{"type": "addMe"}

Security frameworks: comparison

Game-based security Composable/simulation-
based security

Simple to understand
Simple to see if this is the

“good” definition

Stronger guarantees
Notions natural to express Signatures MPC
Security guaranteed when
protocols are composed

Impossibility results are rare
Example of equivalent

definitions IND-CPA Semantic-security

[GM84]
Léo Colisson | 18

blenderpoint
{"type": "addMe"}

Security frameworks: comparison

Game-based security
Focus of this course

Composable/simulation-
based security

Simple to understand
Simple to see if this is the

“good” definition

Stronger guarantees
Notions natural to express Signatures MPC
Security guaranteed when
protocols are composed

Impossibility results are rare
Example of equivalent

definitions IND-CPA Semantic-security

[GM84]
Léo Colisson | 18

blenderpoint
{"type": "addMe"}

Game-based security

The challenger models what the adversary is allowed to do and what is
considered to be “bad” in term of security:
• Which message/function can the adversary read/call?
• Passive (= eavedropper) or active adversary (= man in the middle)?
• Blackbox or with physical access to a device?

• Side channel attacks (= record electric consumption, noise. . .)
• Fault attacks (e.g. shooting magnetic waves to disturb a circuit. . .)

• What must be kept secret? (based on the return value of the challenger)

Léo Colisson | 19

blenderpoint
{"type": "addMe"}

Kerckhoff’s principle

Kerckhoff’s principle

The adversaries knows all details of the protocol (but cannot know di-
rectly the values sampled while running the protocol)

Léo Colisson | 20

blenderpoint
{"type": "addMe"}

Questions

?

Consider the following challenger: is it modeling:
A a passive adversary,
B an active one?

Challenger
m $← {0,1}λ
k ← Gen(1λ)
c← Enck(m)

return m = m̃

Adversaryc

m̃

Win(=true)/Lose(=false)

Léo Colisson | 21

blenderpoint
{"type": "addMe"}

Questions

?

Consider the following challenger, and assume that for any adversary A, the
probability of winning this game is negligible. Let A be an adversary, then:

A The probability for A to learn x is 0
B A has negligible chance to learn the first half of x
C A has negligible chance to learn all bits of x
D A has negligible chance to learn all bits of r
E If in practice an adversary can observe arbitrary pairs of messages and

their encryption, they are still unable to recover x

Challenger
x $← {0, 1}λ
r $← {0, 1}λ
k ← Gen(1λ)
c← Enck(x∥r)

return x = x̃

Adversary
c

x̃, r̃

Léo Colisson | 22

blenderpoint
{"type": "addMe"}

Equivalent notations/formulations

Challenger
m $← {0,1}λ

k ← Gen(1λ)
c← Enck(m)

return m = m̃

Adversaryc

m̃
= Pr

m $←{0,1}λ
k←Gen(1λ)
c←Enck(m)

m̃←A(c)

[m = m̃]

= Pr
m $←{0,1}λ

m̃←A ⋄ Lm

[m = m̃

Lm
k ← Gen(1λ)
c← Enck(m)
getc():

return c

]

Verbose, hard to manipulate
formally

More standard but often
harder to manipulate and

check

From Joy of cryptography:
easier to re-use and

write/check proofs (explicit
dependency, small

reductions easy to check)
But fundamentally the same, just different presentations!

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

Equivalent notations/formulations

Challenger
m $← {0,1}λ

k ← Gen(1λ)
c← Enck(m)

return m = m̃

Adversaryc

m̃
= Pr

m $←{0,1}λ
k←Gen(1λ)
c←Enck(m)

m̃←A(c)

If A has oracle access to Enck(·), we write AEnck

[m = m̃]

= Pr
m $←{0,1}λ

m̃←A ⋄ Lm

[m = m̃

Lm
k ← Gen(1λ)
c← Enck(m)
getc():

return c

]

Verbose, hard to manipulate
formally

More standard but often
harder to manipulate and

check

From Joy of cryptography:
easier to re-use and

write/check proofs (explicit
dependency, small

reductions easy to check)
But fundamentally the same, just different presentations!

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

Equivalent notations/formulations

Challenger
m $← {0,1}λ

k ← Gen(1λ)
c← Enck(m)

return m = m̃

Adversaryc

m̃
= Pr

m $←{0,1}λ
k←Gen(1λ)
c←Enck(m)

m̃←A(c)

[m = m̃] = Pr
m $←{0,1}λ

m̃←A ⋄ Lm

A ⋄ L means that A has oracle ac-
cess to L (called library), like AL but
this notation is used in Joy of cryptog-
raphy and is practical when chaining
multiple libraries.

[m = m̃

Lm
k ← Gen(1λ)
c← Enck(m)
getc():

return c

]

Verbose, hard to manipulate
formally

More standard but often
harder to manipulate and

check

From Joy of cryptography:
easier to re-use and

write/check proofs (explicit
dependency, small

reductions easy to check)
But fundamentally the same, just different presentations!

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

Equivalent notations/formulations

Challenger
m $← {0,1}λ

k ← Gen(1λ)
c← Enck(m)

return m = m̃

Adversaryc

m̃
= Pr

m $←{0,1}λ
k←Gen(1λ)
c←Enck(m)

m̃←A(c)

[m = m̃] = Pr
m $←{0,1}λ

m̃←A ⋄ Lm

[m = m̃

Lm
k ← Gen(1λ)
c← Enck(m)
getc():

return c

]

Verbose, hard to manipulate
formally

More standard but often
harder to manipulate and

check

From Joy of cryptography:
easier to re-use and

write/check proofs (explicit
dependency, small

reductions easy to check)
But fundamentally the same, just different presentations!

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

Game-based security

We can also model the power of an adversary (typically modeled as a Turing
machine) in the quantification of the adversary:
• “For any unbounded A, the probability of winning is low” =

statistical/information theoretic security
• “For any polynomially bounded adversary A, the probability of winning

is low” = computational security

?
If the running time of A(n) is

√
n, is A polynomial?

A Yes
B No

It must run in polynomial time in the length (log(n)) of
the input (otherwise factoring is efficient!).

Léo Colisson | 24

blenderpoint
{"type": "addMe"}

Game-based security

We can also model the power of an adversary (typically modeled as a Turing
machine) in the quantification of the adversary:
• “For any unbounded A, the probability of winning is low” =

statistical/information theoretic security
• “For any polynomially bounded adversary A, the probability of winning

is low” = computational security

?
If the running time of A(n) is

√
n, is A polynomial?

A Yes
B No It must run in polynomial time in the length (log(n)) of

the input (otherwise factoring is efficient!).

Léo Colisson | 24

blenderpoint
{"type": "addMe"}

Game-based security

We can also model the power of an adversary (typically modeled as a Turing
machine) in the quantification of the adversary:
• “For any unbounded A, the probability of winning is low

What is low?

” =
statistical/information theoretic security
• “For any polynomially bounded adversary A, the probability of winning

is low” = computational security

?
If the running time of A(n) is

√
n, is A polynomial?

A Yes
B No

It must run in polynomial time in the length (log(n)) of
the input (otherwise factoring is efficient!).

Léo Colisson | 24

blenderpoint
{"type": "addMe"}

Search vs decision

Definition of “low” = depends on the challenger, but typically we have 2 cases:
• Search problem: adversary needs to find a bit-string (e.g. “decrypt this

message”): low = negl(λ)
• Decision problem: adversary needs to find a single bit b (e.g. “is this an

encryption of m0 or m1?”): low = 1/2+ negl(λ)
⇒We define the advantage:

AdvA(λ) =
∣∣∣Pr [A(1λ) ⋄ L0 = 1

]
− Pr

[
A(1λ) ⋄ L1 = 1

]∣∣∣ ≤ negl(λ)

NB: theoretically, security is an asymptotic notion!

Léo Colisson | 25

blenderpoint
{"type": "addMe"}

Search vs decision

?
Consider the following
challenger, is it modeling:

A a search problem
B a decision problem

Challenger
m $← {0,1}λ
k ← Gen(1λ)
c← Enck(m)

return m = m̃

Adversaryc

m̃

Léo Colisson | 26

blenderpoint
{"type": "addMe"}

Search vs decision

?
Consider the following
challenger, is it modeling:

A a search problem
B a decision problem

Challenger
m $← {0,1}λ
k ← Gen(1λ)
c← Enck(m)

return m = m̃

Adversaryc

m̃

Léo Colisson | 26

blenderpoint
{"type": "addMe"}

Asymptotic vs actual security

In theoretical analysis, security is asymptotic. In practice: How to choose λ ?
Typically:

A Study the best known attacks, count the number of operations T and
the advantage ε (trade-off time/precision), consider that the actual
number of operations is roughly1 T/ε.
⇒ this protocol has log(T/ε)-bits of security.

B Realize that:
• 240 operations is really easy to do (small raspberry pi cluster)
• 260 operations doable with large CPU/GPU cluster
• 280 operations doable with an ASIC cluster (bitcoin mining)
• 2128 operations = very hard (next slide)

1More details in [Watanabe, Yasunaga 2021] and [Micciancio, Walter 2018].
Léo Colisson | 27

blenderpoint
{"type": "addMe"}

How big is 2128?

Say that:
• problem is parallelizable
• you can access all 500 best super-computers = 10 000 000 000 GFLOPS

(FLOPS = floating point operations per second)
Then, you need in total:

2128
10× 109 × 109 × 3600× 24× 365 ≈ 1 000 000 000 000 years

(roughly 4× age of earth)

Léo Colisson | 28

blenderpoint
{"type": "addMe"}

How to write security proofs

blenderpoint
{"type": "addMe"}

Goal

Focus: decision problems. Goal: bound |Pr [A ⋄ L0 = 1]− Pr [A ⋄ L1 = 1] |.

Definition (interchangeability)

Two libraries L0 and L1 are interchangeable (or equal), written L0 ≡ L1, if
for any adversary A,

Pr
[
A ⋄ L0 = 1

]
= Pr

[
A ⋄ L1 = 1

]

Léo Colisson | 30

blenderpoint
{"type": "addMe"}

Goal

Definition (Indistinguishability)

Two libraries L0 and L1 are indistinguishable, written L0 ≈ L1, if for any
adversary A(1λ) running in polynomial time and outputting a single bit:∣∣∣Pr [A(1λ) ⋄ L0 = 1

]
− Pr

[
A(1λ) ⋄ L1 = 1

]∣∣∣ ≤ negl(λ)

Léo Colisson | 31

blenderpoint
{"type": "addMe"}

Basic properties

Properties (also hold when replacing ≈ with ≡)

• Transitivity: (L0 ≈ L1) ∧ (L1 ≈ L2)⇒ L0 ≈ L2
• Chaining: (L0 ≈ L1)⇒ ((L ⋄ L0) ≈ (L ⋄ L1))

Proof transitivity (basically triangle inequality): We assume L0 ≈ L1 ∧ L1 ≈ L2. Let A run in poly-
nomial time. Then by definition:

|Pr [A ⋄ L0 = 1]− Pr [A ⋄ L1 = 1] | ≤ negl(λ) ∧ |Pr [A ⋄ L1 = 1]− Pr [A ⋄ L2 = 1] | ≤ negl(λ)

But

|Pr [A ⋄ L0 = 1]− Pr [A ⋄ L1 = 1] |
= |Pr [A ⋄ L0 = 1]− Pr [A ⋄ L1 = 1] + Pr [A ⋄ L1 = 1]− Pr [A ⋄ L2 = 1] |
≤ |Pr [A ⋄ L0 = 1]− Pr [A ⋄ L1 = 1] |+ |Pr [A ⋄ L1 = 1]− Pr [A ⋄ L2 = 1] |
≤ negl(λ) + negl(λ) ≤ negl(λ)

Léo Colisson | 32

blenderpoint
{"type": "addMe"}

Basic properties

Properties (also hold when replacing ≈ with ≡)

• Transitivity: (L0 ≈ L1) ∧ (L1 ≈ L2)⇒ L0 ≈ L2
• Chaining: (L0 ≈ L1)⇒ ((L ⋄ L0) ≈ (L ⋄ L1))

Proof chaining: We assume that L0 ≈ L1. Let A run in poly time. We want to show (L ⋄ L0) ≈
(L ⋄ L1):

|Pr [A ⋄ (L ⋄ L0) = 1]− Pr [A ⋄ (L ⋄ L2) = 1] |
= |Pr [(A ⋄ L) ⋄ L0 = 1]− Pr [(A ⋄ L) ⋄ L1 = 1] |
=

A′ := A ⋄ L
|Pr

[
A′ ⋄ L0 = 1

]
− Pr

[
A′ ⋄ L1 = 1

]
|

since A runs in poly time, so does A′. Hence using L0 ≈ L1 the above is negl(λ).

Léo Colisson | 32

blenderpoint
{"type": "addMe"}

Reduction

Six main methods:
1 Hybrid games: Decompose into a sequence of hybrid games (to make

methods 2 – 6 easier)
2 Probabilities: Explicitly compute the probability, and show equality or

bound the statistical distance (statistical security only)
3 Equality: Show that the two games are trivially doing exactly the same

thing (variant of 2)
(e.g. code simply externalized to a sub-library, code that is simply
inlined. . .)

4 Reduction: show that if we can distinguish them, they A can be used to
break a hard problem (factor numbers. . .)

5 Theorem/assumption: use a theorem already seen in the course or an
assumption

6 Chaining: prove L1 ≈ L2, then A ⋄ L1 ≈ A ⋄ L2
We detail methods 1,2,3,4 now (5 & 6 trivial).

Léo Colisson | 33

blenderpoint
{"type": "addMe"}

Hybrid games

Proof = sequence of hybrid games:

A ⋄ L0

A ⋄ L1

A ⋄ G2
ε 1

A ⋄ G3

ε2

A ⋄ G4

ε 3

ε4

≤ ε1 + ε2 + ε3 + ε4

By transitivity, if L0 ≈ G2 ≈ G3 ≈ G4 ≈ L1, then L0 ≈ L1.

Léo Colisson | 34

blenderpoint
{"type": "addMe"}

Hybrid games

Proof = sequence of hybrid games:

A ⋄ L0

A ⋄ L1A ⋄ G2
ε 1

A ⋄ G3

ε2

A ⋄ G4

ε 3

ε4

≤ ε1 + ε2 + ε3 + ε4

By transitivity, if L0 ≈ G2 ≈ G3 ≈ G4 ≈ L1, then L0 ≈ L1.

Léo Colisson | 34

blenderpoint
{"type": "addMe"}

Hybrid games

Proof = sequence of hybrid games:

A ⋄ L0

A ⋄ L1A ⋄ G2
ε 1

A ⋄ G3

ε2

A ⋄ G4

ε 3

ε4

≤ ε1 + ε2 + ε3 + ε4

By transitivity, if L0 ≈ G2 ≈ G3 ≈ G4 ≈ L1, then L0 ≈ L1.

Léo Colisson | 34

blenderpoint
{"type": "addMe"}

Hybrid games

Proof = sequence of hybrid games:

A ⋄ L0

A ⋄ L1A ⋄ G2
ε 1

A ⋄ G3

ε2

A ⋄ G4

ε 3

ε4

≤ ε1 + ε2 + ε3 + ε4

By transitivity, if L0 ≈ G2 ≈ G3 ≈ G4 ≈ L1, then L0 ≈ L1.

Léo Colisson | 34

blenderpoint
{"type": "addMe"}

Hybrid games

Proof = sequence of hybrid games:

A ⋄ L0

A ⋄ L1A ⋄ G2
ε 1

A ⋄ G3

ε2

A ⋄ G4

ε 3

ε4

≤ ε1 + ε2 + ε3 + ε4

By transitivity, if L0 ≈ G2 ≈ G3 ≈ G4 ≈ L1, then L0 ≈ L1.

Léo Colisson | 34

blenderpoint
{"type": "addMe"}

Hybrid games

Proof = sequence of hybrid games:

A ⋄ L0

A ⋄ L1A ⋄ G2
ε 1

A ⋄ G3

ε2

A ⋄ G4

ε 3

ε4

≤ ε1 + ε2 + ε3 + ε4

By transitivity, if L0 ≈ G2 ≈ G3 ≈ G4 ≈ L1, then L0 ≈ L1.

Léo Colisson | 34

blenderpoint
{"type": "addMe"}

Hybrid games

Proof = sequence of hybrid games:

A ⋄ L0

A ⋄ L1A ⋄ G2
ε 1

A ⋄ G3

ε2

A ⋄ G4

ε 3

ε4

≤ ε1 + ε2 + ε3 + ε4

By transitivity, if L0 ≈ G2 ≈ G3 ≈ G4 ≈ L1, then L0 ≈ L1.

Léo Colisson | 34

blenderpoint
{"type": "addMe"}

Equality

Just realize two libraries are trivially doing the exact same thing (e.g. move a
call in a sub-library or inline a sub-library in a code)
WARNING: Make sure variables are always well defined, with no naming
collision and well scoped (a sub-library cannot refer to a variable of a parent
library)

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

Equality

?

Are these two libraries equal?

A Yes

Variable are well scoped, inlined a sub-library

B No

Léo Colisson | 36

blenderpoint
{"type": "addMe"}

Equality

?

Are these two libraries equal?

A Yes Variable are well scoped, inlined a sub-library
B No

Léo Colisson | 36

blenderpoint
{"type": "addMe"}

Equality

?

Are these two libraries equal?

L0
k ← Gen(1λ)
c← Enck(m)
get():

return c

=

L1
k ← Gen(1λ)
get():

return myget()

⋄

L2
c← Enck(m)
myget():

return c

A Yes
B No

k is not defined in L2

Léo Colisson | 37

blenderpoint
{"type": "addMe"}

Equality

?

Are these two libraries equal?

L0
k ← Gen(1λ)
c← Enck(m)
get():

return c

=

L1
k ← Gen(1λ)
get():

return myget()

⋄

L2
c← Enck(m)
myget():

return c

A Yes
B No k is not defined in L2

Léo Colisson | 37

blenderpoint
{"type": "addMe"}

Equality

?

Are these two libraries equal?

L0
k ← Gen(1λ)
get():

return 42

≡
L1

get():
return 42

A Yes
B No

Léo Colisson | 38

blenderpoint
{"type": "addMe"}

Equality

?

Are these two libraries equal?

L0
k ← Gen(1λ)
get():

return 42

≡
L1

get():
return 42

A Yes k is never used, safe to remove it
B No

Léo Colisson | 38

blenderpoint
{"type": "addMe"}

Method: compute probabilities

Theorem (One-time-pad uniform ciphertext)

Lotp-real

otenc(m ∈ {0,1}λ):
k $← {0,1}λ
return k ⊕m

≡

Lotp-rand

otenc(m ∈ {0,1}λ):
c $← {0,1}λ
return c

Proof Let m, c̃ ∈ {0,1}λ. In Lotp-rand, Pr [otenc(m) = c̃] = 1
2λ (uniform sampling). In Lotp-real:

Pr [otenc(m) = c̃] = Pr
[
k ⊕m = c̃

∣∣ k $← {0,1}λ
]
= Pr

[
c̃⊕m = k

∣∣ k $← {0,1}λ
]

= Pr
[
C = k

∣∣ k $← {0,1}λ
]
=

1
2λ = Pr [otenc(m) = c̃]

where C := c̃⊕m. Hence, Lotp-real = Lotp-randLéo Colisson | 39

blenderpoint
{"type": "addMe"}

Method: reduction

All the above methods = interchangeability (statistical indistinguishability).
What about computational indistinguishability? Either directly an
assumption that the two libraries are hard to distinguish (possibly need an
hybrid sequence first), otherwise:

Reduction!

Attacker against problem YYY A

Idea: to prove L0 ≈ L1, assume L0 ̸≈ L1, i.e. ∃ polynomial adversary A s.t.
|Pr [A ⋄ L0 = 1]− Pr [A ⋄ L1 = 1] |. Use A as a subroutine to break a hard
problem (compute explicitly the success probability)⇒ contradiction!

Léo Colisson | 40

blenderpoint
{"type": "addMe"}

Method: reduction

Option 1: single huge reduction: hard to write and read
Option 2: hybrids + small reduction

Often not even needed if the
assumptions are already expressed
as indistinguishable libraries

Easier to read and verify

Léo Colisson | 41

blenderpoint
{"type": "addMe"}

Some useful theorems

blenderpoint
{"type": "addMe"}

Bad event lemma

Bad event lemma

Let Lleft and Lright be two libraries that define a variable named bad, that is initialized
to 0. If Lleft and Lright have identical code except for code blocks reachable only when
bad = 1 (e.g. guarded with an “if bad = 1” statement), then:

|Pr [A ⋄ Lleft = 1]− Pr
[
A ⋄ Lright = 1

]
| ≤ Pr [A ⋄ Lleft sets bad = 1] (1)

Proof: Define Aleft the event “A ⋄ Lleft = 1”, Aright the event “A ⋄ Lright = 1”, Bleft the event
A ⋄ Lleft sets bad = 1, and Bright the event A ⋄ Lleft sets bad = 1, and ·̄ is the negation of event ·.
|Pr [Aleft]− Pr

[
Aright

]
| = |Pr [Bleft] Pr

[
Aleft

∣∣ Bleft
]
+ Pr

[
B̄left

]
Pr

[
Aleft

∣∣ B̄left
]

− Pr
[
Bright

]
Pr

[
Aright

∣∣ Bright
]
− Pr

[
B̄right

]
Pr

[
Aright

∣∣ B̄right
]
|

≤

Triangle ineq. & Pr [Bleft] = Pr
[
Bright

]
(identical code before setting bad)

Pr
[
B̄left

]
|Pr

[
Aleft

∣∣ B̄left
]
− Pr

[
Aright

∣∣ B̄right
]
|︸ ︷︷ ︸

=0 (same code when bad is 0)

+Pr [Bleft] |Pr
[
Aleft

∣∣ Bleft
]
− Pr

[
Aright

∣∣ Bright
]
|︸ ︷︷ ︸

≤1

≤ Pr [Bleft]

Léo Colisson | 43

blenderpoint
{"type": "addMe"}

Application bad event lemma

?

We want to show that
Lleft

predict(x):
s $← {0,1}λ

return x ?
= s

≈
Lright

predict(x):
return false

. A student already wrote these

two hybrid games:

G1
bad := 0
predict(x):
s $← {0,1}λ

if x ?
= s:

bad := 1

return false

and

G2
bad := 0
predict(x):
s $← {0,1}λ

if x ?
= s:

bad := 1
return true

return false

. How can you finish the proof?

A Lleft = G1 ≈ G2 = Lright

B Lleft ≈ G1 = G2 ≈ Lright

C Lleft = G2 ≈ G1 = Lright

D Lleft ≈ G2 = G1 ≈ Lright
Léo Colisson | 44

blenderpoint
{"type": "addMe"}

Application bad event lemma

?

We want to show that
Lleft

predict(x):
s $← {0,1}λ

return x ?
= s

≈
Lright

predict(x):
return false

. A student already wrote these

two hybrid games:

G1
bad := 0
predict(x):
s $← {0,1}λ

if x ?
= s:

bad := 1

return false

and

G2
bad := 0
predict(x):
s $← {0,1}λ

if x ?
= s:

bad := 1
return true

return false

. How can you finish the proof?

A Lleft = G1 ≈ G2 = Lright

B Lleft ≈ G1 = G2 ≈ Lright

C Lleft = G2 ≈ G1 = Lright We use the bad event lemma to show G2 ≈ G1
(Pr [bad = 1] = 1

2λ = negl(λ))

D Lleft ≈ G2 = G1 ≈ Lright
Léo Colisson | 44

blenderpoint
{"type": "addMe"}

How to prove INsecurity?

blenderpoint
{"type": "addMe"}

How to prove INsecurity

To prove insecurity for a decision game between L0 and L1:
• exhibits a given attacker A
• compute ε = |Pr [A ⋄ L0 = 1]− Pr [A ⋄ L1 = 1] |
• show that ∃c ∈ N s.t. ε is greater than 1

λc

Léo Colisson | 46

blenderpoint
{"type": "addMe"}

How to prove INsecurity

?

Which attacker can distinguish these two libraries, and with which advantage?

1
A

c := ctxt(0λ)

return c = 0λ

, advantage 1/4 (A), 1/2 (B), 1/2− 1
2λ (C) or 1− 1

2λ (D)

2
A

c := ctxt(1λ)

return c = 0λ

, advantage 1/4 (E), 1/2 (F), 1/2− 1
2λ (G) or 1− 1

2λ (H)

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

How to prove INsecurity

?

Which attacker can distinguish these two libraries, and with which advantage?

1
A

c := ctxt(0λ)

return c = 0λ

, advantage 1/4 (A), 1/2 (B), 1/2− 1
2λ (C) or 1− 1

2λ (D)

2
A

c := ctxt(1λ)

return c = 0λ

, advantage 1/4 (E), 1/2 (F), 1/2− 1
2λ (G) or 1− 1

2λ (H)

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

How to prove INsecurity

?

Which attacker can distinguish these two libraries, and with which advantage?

1
A

c := ctxt(0λ)

return c = 0λ

, advantage 1/4 (A), 1/2 (B), 1/2− 1
2λ (C) or 1− 1

2λ (D)

2
A

c := ctxt(1λ)

return c = 0λ

, advantage 1/4 (E), 1/2 (F), 1/2− 1
2λ (G) or 1− 1

2λ (H)

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Uniform vs non-uniform

Small subtleties: we always consider infinite sequences of adversaries, based
on security parameter λ. How do we define these algorithms?
• Uniform algorithm: same Turing machine for all instance size
• Non-uniform algorithm: sequence {Cλ}λ∈N of circuits, or, equivalently, a

fixed Turing machine with an auxiliary “advice” input, identical for all
instances of same size

Non-uniform adversaries = slightly stronger (P/poly vs P) + somewhat
unrealistic, but appear naturally e.g. in simulation-based security (see [Lindel
17] for examples)

Léo Colisson | 48

blenderpoint
{"type": "addMe"}

Uniform vs non-uniform

In practice, not a big deal:
• Mostly changes assumptions: “YYY is hard to solve in polynomial time”⇒

“YYY is hard against non-uniform adversaries”
• But all common assumptions are believed to hold in both cases anyway

Léo Colisson | 49

blenderpoint
{"type": "addMe"}

