Crypto Engineering 2024 Security definitions & proof methods

Léo Colisson Palais

leo.colisson-palais@univ-grenoble-alpes.fr
https://leo.colisson.me/teaching.html

Some references

- Framework of this course: The Joy of Cryptography, Mike Rosulek https://joyofcryptography.com/
- *Introduction to Modern Cryptography*, Jonathan Katz & Yehuda Lindell
- Foundation of Cryptography, Oded Goldreich

With me:

- 5 CMs, 3 TDs
- Symmetric cryptography, in particular:
 - Symmetric encryption & block ciphers
 - Authentication (MAC)
 - Hash functions & specificity of password hashing
- Goals:
 - Study security models
 - See some constructions
 - Analyse and prove their security
 - See some bad ideas that you should NEVER DO

With me:

- 5 CMs, 3 TDs
- Symmetric cryptography, in particular:
 - Symmetric encryption & block ciphore
 - Authentication (MAC)

Important to **define them rigorously**, otherwise, easy to declare an insecure protocol secure.

- Hash functions & specific Also important to understand how these definitions
- Goals:

- influence the security guarantees
- Study security models
- See some constructions
- Analyse and prove their security
- See some bad ideas that you should NEVER DO

With me:

- 5 CMs, 3 TDs
- Symmetric cryptography, in particula
 - Symmetric encryption & block ciph
 - Authentication (MAC)
 - Hash functions & specificity of pass
- Goals:
 - Study security models
 - See some constructions
 - Analyse and prove their security
 - See some bad ideas that you should NEVER DO

Proofs guarantee security in a given attack model, but remember, a proof is always a model!

With me:

- 5 CMs, 3 TDs
- Symmetric cryptography, in particular:
 - Symmetric encryption & block ciphers
 - Authentication (MAC)
 - Hash functions & specificity of password hashing
- Goals:
 - Study security models
 - See some constructions
 - Analyse and prove their security
 - See some bad ideas that you should NEVER DO

Notations

Notation	Meaning
$x \xleftarrow{\$} X$	x is obtained by sampling an element uniformly at random from the set X
$y \leftarrow A(x)$	If A is a (probabilistic) algorithm or a distribution, we run A on input x and store the result in x
$x \stackrel{?}{=} y$	Returns 1 (true) if <i>x</i> equals <i>y</i> , 0 (false) otherwise
$negl(\lambda)$	An arbitrary function f that is negligible (= smaller than any inverse polynomial), i.e. $orall c \in \mathbb{N}, \lim_{\lambda o \infty} \lambda^c f(\lambda) = 0$
$poly(\lambda)$	A function smaller than some polynomials, i.e. $\exists c \in N, N \in N, orall \lambda > N, f(\lambda) \leq \lambda^c$

Which functions are negligible?

? (A)
$$f(\lambda) = \frac{1}{2^{\lambda}}$$

(B) $f(\lambda) = \frac{1}{\lambda^{1000}}$
(C) $f(\lambda) = 2^{-\log \lambda}$

 $\mathsf{NB:} \mathsf{negl}(\lambda) + \mathsf{negl}(\lambda) = \mathsf{negl}(\lambda), \mathsf{negl}(\lambda) \succeq_{\mathsf{ed}} \mathsf{negl}(\lambda)_{|} = \mathsf{negl}(\lambda), \mathsf{poly}(\lambda) \mathsf{negl}(\lambda) = \mathsf{negl}(\lambda)$

Symmetric vs asymmetric cryptography

 \neq

Symmetric encryption

Both parties share the same secret

Asymmetric encryption

One party has an extra secret information (**trapdoor** that can be used to invert a function easily)

С

 \mathbf{m}

 \mathbf{m}

m

Activity: design your own private-key cryptosystem (2mn) that we will analyse later, i.e.:

- Key-generation $k \leftarrow \mathsf{Gen}(1^{\lambda})$
- Encryption $c \leftarrow \mathsf{Enc}_k(m)$
- Decryption $m \leftarrow \mathsf{Dec}_k(c)$

Activity: design your own private-key cryptosystem (2mn) that we will analyse later, i.e.: $\underbrace{\text{Key } k \in \mathcal{K}}_{}$

- Key-generation $\dot{k} \leftarrow \mathsf{Gen}(\mathbf{1}^{\lambda})$
- Encryption $c \leftarrow \mathsf{Enc}_k(m)$
- Decryption $m \leftarrow \mathsf{Dec}_k(c)$

Security parameter $\lambda \in \mathbb{N}$ in unary form: Gen runs in poly time in the size of its input

Activity: design your own private-key cryptosystem (2mn) that we will analyse later, i.e.: Key $k \in \mathcal{K}$

- Key-generation $\dot{k} \leftarrow \text{Gen}(\dot{1^{\lambda}})$
- Encryption $c \leftarrow \mathsf{Enc}_k(m)$
- Decryption $m \leftarrow \mathsf{Dec}_k(c)$

Security parameter $\lambda \in \mathbb{N}$ in unary form: Gen runs in poly time in the size of its input

Activity: design your own private-key cryptosystem (2mn) that we will analyse later, i.e.: Key $k \in \mathcal{K}$

- Key-generation $\dot{k} \leftarrow \mathsf{Gen}(\dot{\mathbf{1}^{\lambda}})$
- Encryption $c \leftarrow \text{Enc}_k(m)$ Message $m \in \mathcal{M}$
- Decryption $m \leftarrow \mathsf{Dec}_k(c)$

Security parameter $\lambda \in \mathbb{N}$ in unary form: Gen runs in poly time in the size of its input

Activity: design your own private-key cryptosystem (2mn) that we will analyse later, i.e.: Key $k \in \mathcal{K}$

- Key-generation $\dot{k} \leftarrow \mathsf{Gen}(\dot{\mathbf{1}^{\lambda}})$
- Encryption $c \leftarrow \text{Enc}_k(m)$ Message $m \in M$
- Decryption $m \leftarrow \mathsf{Dec}_k(c)$

Léo Colisson | 6

Ciphertext $c \in C$

Symmetric vs asymmetric cryptography

Asymmetric encryption

On need to share secrets (e.g. internet)

Stronger assumptions factoring, LWE... (functions highly structured)

😫 Less efficient

😫 No statistical security

Symmetric encryption

😫 Need to share secrets

- Weaker assumptions (less structure)
- 😂 More efficient
- Statistical security possible
 (but impractical)

 \Rightarrow Hybrid systems: **combine both** = best of both world (efficient + no secret to distribute)

Cryptography is not (just) encryption

WARNING

Cryptography is not just about encryption:

- cryptocurrency (bitcoin...)
- signature
- commitments
- multi-party computing (MPC)
- quantum money
- position verification
- zero-knowledge (ZK) proofs
- electronic voting

...

Impagliazzo's worlds

Impagliazzo's worlds

Impagliazzo's worlds

No absolute security

Since we don't know in which world we are = **no absolute security** (except One-Time Pad) \Rightarrow always rely on some **assumptions**:

Indistinguishable Obfuscation (iO)...

Important to clearly state them and understand their implications!

When designing a crypto system, we want to say:

"The protocol XXX is **secure** in the plain/CRS/RO model assuming YYY is hard."

When designing a crypto system, we want to say:

"The protocol XXX is **secure** in the plain/CRS/RO model assuming YYY is hard."

When designing a crypto system, we want to say:

"The protocol XXX is secure in the plain/CRS/RO model assuming YYY is hard."

 \Rightarrow We also need to define a *security model* (a.k.a *attack model*) = expectations in term of security (e.g. the adversary should not learn the message)

Easy to intuitively say what we expect, **hard to find a good security model** that captures all possible unwanted behaviors:

E.g. for encryption:

Attempt 1: "Given an encryption of *m*, an adversary should not be able to recover *m*". Is this a good security definition? (if not, find a scenario where this could go wrong)
A Yes
B No

Easy to intuitively say what we expect, **hard to find a good security model** that captures all possible unwanted behaviors:

E.g. for encryption:

\Lambda Yes 💥

Attempt 1: "Given an encryption of m, an adversary should not be able to recover m". Is this a good security definition? (if not, find a scenario where this could go wrong)

B No \checkmark Recovering 3/4 of the message is already a big issue! E.g. m = "?????????, hence we attack tomorrow"

\Lambda Yes 🗶

Attempt 2: "Given an encryption of m, an adversary should not be able to recover any bit of m". Is this a good security definition? (if not, find a scenario where this could go wrong)

B No \checkmark Knowing which groups of bits are different already leaks a lot:

AN ENCRYPTION MUST ALWAYS BE NON-DETERMINISTIC!!!

NEVER DO THIS

Was it the case of your encryption algorithm?

AN ENCRYPTION MUST ALWAYS BE NON-DETERMINISTIC!!!

NEVER DO THIS

Was it the case of your encryption algorithm?

AN ENCRYPTION MUST ALWAYS BE NON-DETERMINISTIC!!!

NEVER USE A HOME-MADE ENCRYPTION, IT <u>WILL</u> BE INSECURE!!!

A Yes B No

Attempt 3: "Given 2 random messages m_0 and m_1 (known to the adversary), an adversary should not be able to tell if the message m_0 or m_1 was encrypted.". Is this a good security definition? (if not, find a scenario where this could go wrong)

Attempt 3: "Given 2 random messages m_0 and m_1 (known to the adversary), an adversary should not be able to tell if the message m_0 or m_1 was encrypted.". Is this a good security definition? (if not, find a scenario where this could go wrong)

\Lambda Yes 💢

B No Good enough if we encrypt random messages...But in practice we encrypt precise messages, say "Yes" and "No", and it could be a very bad encryption for these precise two messages while still being good on all others.

Attempt 4: "For all messages m_0 and m_1 (known to the adversary), an adversary should not be able to tell if the message m_0 or m_1 was encrypted.". Is this a good security definition? (if not, find a scenario where this could go wrong)

A Yes B No

Attempt 4: "For all messages m_0 and m_1 (known to the adversary), an adversary should not be able to tell if the message m_0 or m_1 was encrypted.". Is this a good security definition? (if not, find a scenario where this could go wrong)

?

B No \checkmark This is actually **too strong**: when $m_0 = k$ and $m_1 = 0$, the adversary can just use m_0 (i.e. k) to decrypt. And if we also require k to be sampled *after* m_0 (so that m_0 and k are independent), this is **too weak**: in practice, the message may depend on k (e.g. after seeing a previous encryption).

Attempt 4: "For all messages m_0 and m_1 (known to the adversary), an adversary should not be able to tell if the message m_0 or m_1 was encrypted.". Is this a good security definition? (if not, find a scenario where this could go wrong)

\land Yes 样

B No \checkmark This is actually **too strong**: when $m_0 = k$ and $m_1 = 0$, the adversary can just use m_0 (i.e. k) to decrypt. And if we also require k to be sampled *after* m_0 (so that m_0 and k are independent), this is **too weak**: in practice, the message may depend on k (e.g. after seeing a previous encryption).

The adversary should choose m_0 and m_1 , but when? What can the adversary use before choosing them? How to formalize this?

So how to define a secure protocol/encryption? \Rightarrow There is not one, but **multiple** definitions of security (with different guarantees)

3 classes of security models:

1: Game-based security = Fix a **challenger** (defines the security goals):

Secure if for any adversary, the probability of winning is "low" (might be $1/2 + negl(\lambda)$ or $0 + negl(\lambda)$ depending on the game)

So how to define a secure protocol/encryption? \Rightarrow There is not one, but **multiple** definitions of security (with different guarantees)

3 classes of security models:

1: Game-based security = Fix a **challenger** (defines the security goals):

Stronger models

• General composability

• Sequential composability

• Game-based security

Secure if for any adversary, the probability of winning is "low" (might be $1/2 + negl(\lambda)$ or $0 + negl(\lambda)$ depending on the game)

So how to define a secure protocol/encryption? \Rightarrow There is not one, but **multiple** definitions of Q: Is this challenger corresponding to the "don't learn m" (A) or "learn no bit about m" (B) security notion?

3 classes of security models:

1: Game-based security = Fix a **challenger** (defines the security goals):

Stronger models

• General composability

• Sequential composability

• Game-based security

Secure if for any adversary, the probability of winning is "low" (might be $1/2 + negl(\lambda)$ or $0 + negl(\lambda)$ depending on the game)

So how to define a secure protocol/encryption? \Rightarrow There is not one, but **multiple** definitions of security (with different guarantees)

3 classes of security models:

2 & 3: Composable frameworks = security based on a **simulator** that translates attacks on the real protocol to attacks on a **functionality** (trusted party) in an ideal world, supposed to be secure by definition:

Main frameworks: standalone security (sequential), Universal Composability [Can10], Abstract Crytography [MR11,M12] (general)

Léo Colisson | 17

Security frameworks: comparison

Security frameworks: comparison

The challenger models what the adversary is allowed to do and what is considered to be "bad" in term of security:

- Which message/function can the adversary read/call?
- Passive (= eavedropper) or active adversary (= man in the middle)?
- Blackbox or with physical access to a device?
 - Side channel attacks (= record electric consumption, noise...)
 - Fault attacks (e.g. shooting magnetic waves to disturb a circuit...)
- What must be kept secret? (based on the return value of the challenger)

Kerckhoff's principle

Kerckhoff's principle

The adversaries knows all details of the protocol (but cannot know directly the values sampled while running the protocol)

Questions

Consider the following challenger: is it modeling:

🔕 a passive adversary,

B an active one?

?

Questions

Consider the following challenger, and assume that for any adversary A, the probability of winning this game is negligible. Let A be an adversary, then:

- A The probability for \mathcal{A} to learn x is 0
- **B** \mathcal{A} has negligible chance to learn the first half of x
- **O** \mathcal{A} has negligible chance to learn all bits of x
- \bigcirc \mathcal{A} has negligible chance to learn all bits of r
- If in practice an adversary can observe arbitrary pairs of messages and their encryption, they are still unable to recover x

Verbose, hard to manipulate formally

More standard but often harder to manipulate and check From Joy of cryptography: easier to re-use and write/check proofs (explicit dependency, small reductions easy to check)

But **fundamentally the same**, just different presentations!

Léo Colisson | 23

We can also model the power of an adversary (typically modeled as a Turing machine) in the quantification of the adversary:

- "For any **unbounded** *A*, the probability of winning is low" = statistical/information theoretic security
- "For any **polynomially** bounded adversary *A*, the probability of winning is low" = computational security

We can also model the power of an adversary (typically modeled as a Turing machine) in the quantification of the adversary:

- "For any **unbounded** *A*, the probability of winning is low" = statistical/information theoretic security
- "For any **polynomially** bounded adversary *A*, the probability of winning is low" = computational security

If the running time of $\mathcal{A}(n)$ is \sqrt{n} , is \mathcal{A} polynomial?

👩 Yes 💢

B No \checkmark It must run in polynomial time in the length ($\log(n)$) of the input (otherwise factoring is efficient!).

We can also model the power of an adversary (typically modeled as a Turing machine) in the quantification of the adversar <u>What is low?</u>

- "For any **unbounded** *A*, the probability of winning is low" = statistical/information theoretic security
- "For any **polynomially** bounded adversary *A*, the probability of winning is low" = computational security

Search vs decision

Definition of "low" = depends on the challenger, but typically we have 2 cases:

- Search problem: adversary needs to find a **bit-string** (e.g. "decrypt this message"): low = negl(λ)
- **Decision problem**: adversary needs to find a **single bit** *b* (e.g. "is this an encryption of m_0 or m_1 ?"): low = $1/2 + \text{negl}(\lambda)$ \Rightarrow We define the **advantage**:

$$\mathsf{Adv}_{\mathcal{A}}(\lambda) = \left| \Pr\left[\left. \mathcal{A}(\mathbf{1}^{\lambda}) \diamond \mathcal{L}_{\underline{\mathbf{0}}} = \mathbf{1} \right. \right] - \Pr\left[\left. \mathcal{A}(\mathbf{1}^{\lambda}) \diamond \mathcal{L}_{\underline{\mathbf{1}}} = \mathbf{1} \right. \right] \right| \le \mathsf{negl}(\lambda)$$

NB: theoretically, security is an **asymptotic** notion!

Search vs decision

Consider the following challenger, is it modeling: a search problem

a decision problem

Search vs decision

Challenger

$$m \stackrel{\$}{\leftarrow} \{0, 1\}^{\lambda}$$

 $k \leftarrow \text{Gen}(1^{\lambda})$
 $c \leftarrow \text{Enc}_{k}(m)$
return $m = \tilde{m}$
 \tilde{m}

Asymptotic vs actual security

In theoretical analysis, security is asymptotic. In practice: How to choose λ ? Typically:

Study the best known attacks, **count the number of operations** *T* and the advantage ε (trade-off time/precision), consider that the actual number of operations is roughly¹ T/ε . \Rightarrow this protocol has $\log(T/\varepsilon)$ -bits of security.

B Realize that:

- 2⁴⁰ operations is really easy to do (small raspberry pi cluster)
- 2⁶⁰ operations doable with large CPU/GPU cluster
- 2⁸⁰ operations doable with an ASIC cluster (bitcoin mining)
- 2¹²⁸ operations = **very hard** (next slide)

Léo Colisson | 27

¹More details in [Watanabe, Yasunaga 2021] and [Micciancio, Walter 2018].

How big is 2¹²⁸?

Say that:

- problem is parallelizable
- you can access all 500 best super-computers $= 10\ 000\ 000\ 000\ GFLOPS$ (FLOPS = floating point operations per second)

Then, you need in total:

$$\frac{2^{128}}{10 \times 10^9 \times 10^9 \times 3600 \times 24 \times 365} \approx \boxed{1\ 000\ 000\ 000\ 000\ years}$$

(roughly $4 \times$ age of earth)

How to write security proofs

Goal

Focus: decision problems. Goal: bound $|\Pr\left[\mathcal{A} \diamond \mathcal{L}_0 = 1\right] - \Pr\left[\mathcal{A} \diamond \mathcal{L}_1 = 1\right]|$.

Definition (interchangeability)

Two libraries \mathcal{L}_0 and \mathcal{L}_1 are *interchangeable* (or *equal*), written $\mathcal{L}_0 \equiv \mathcal{L}_1$, if for any adversary \mathcal{A} ,

$$\Pr\left[\mathcal{A} \diamond \mathcal{L}_{\mathbf{0}} = \mathbf{1}\right] = \Pr\left[\mathcal{A} \diamond \mathcal{L}_{\mathbf{1}} = \mathbf{1}\right]$$

Goal

Definition (Indistinguishability)

Two libraries \mathcal{L}_0 and \mathcal{L}_1 are *indistinguishable*, written $\mathcal{L}_0 \approx \mathcal{L}_1$, if for any adversary $\mathcal{A}(1^{\lambda})$ running in polynomial time and outputting a single bit:

$$\left| \Pr\left[\left. \mathcal{A}(\mathbf{1}^{\lambda}) \diamond \mathcal{L}_{\mathbf{0}} = \mathbf{1} \right. \right] - \Pr\left[\left. \mathcal{A}(\mathbf{1}^{\lambda}) \diamond \mathcal{L}_{\mathbf{1}} = \mathbf{1} \right. \right] \right| \leq \mathsf{negl}(\lambda)$$

Basic properties

Properties (also hold when replacing \approx with \equiv)

- Transitivity: $(\mathcal{L}_0 \approx \mathcal{L}_1) \land (\mathcal{L}_1 \approx \mathcal{L}_2) \Rightarrow \mathcal{L}_0 \approx \mathcal{L}_2$
- Chaining: $(\mathcal{L}_0 \approx \mathcal{L}_1) \Rightarrow ((\mathcal{L} \diamond \mathcal{L}_0) \approx (\mathcal{L} \diamond \mathcal{L}_1))$

Proof transitivity (basically triangle inequality): We assume $\mathcal{L}_0 \approx \mathcal{L}_1 \wedge \mathcal{L}_1 \approx \mathcal{L}_2$. Let \mathcal{A} run in polynomial time. Then by definition:

$$|\Pr\left[\mathcal{A} \diamond \mathcal{L}_0 = 1\right] - \Pr\left[\mathcal{A} \diamond \mathcal{L}_1 = 1\right]| \leq \text{negl}(\lambda) \land |\Pr\left[\mathcal{A} \diamond \mathcal{L}_1 = 1\right] - \Pr\left[\mathcal{A} \diamond \mathcal{L}_2 = 1\right]| \leq \text{negl}(\lambda)$$

But

$$\begin{split} &|\Pr\left[\mathcal{A} \diamond \mathcal{L}_{0} = 1\right] - \Pr\left[\mathcal{A} \diamond \mathcal{L}_{1} = 1\right]| \\ &= |\Pr\left[\mathcal{A} \diamond \mathcal{L}_{0} = 1\right] - \Pr\left[\mathcal{A} \diamond \mathcal{L}_{1} = 1\right] + \Pr\left[\mathcal{A} \diamond \mathcal{L}_{1} = 1\right] - \Pr\left[\mathcal{A} \diamond \mathcal{L}_{2} = 1\right]| \\ &\leq |\Pr\left[\mathcal{A} \diamond \mathcal{L}_{0} = 1\right] - \Pr\left[\mathcal{A} \diamond \mathcal{L}_{1} = 1\right]| + |\Pr\left[\mathcal{A} \diamond \mathcal{L}_{1} = 1\right] - \Pr\left[\mathcal{A} \diamond \mathcal{L}_{2} = 1\right]| \\ &\leq \mathsf{negl}(\lambda) + \mathsf{negl}(\lambda) \leq \mathsf{negl}(\lambda) \\ & {}_{\mathsf{Léc Collisson} \ | \ 32} \end{split}$$

Basic properties

Properties (also hold when replacing \approx with \equiv)

- Transitivity: $(\mathcal{L}_0 \approx \mathcal{L}_1) \land (\mathcal{L}_1 \approx \mathcal{L}_2) \Rightarrow \mathcal{L}_0 \approx \mathcal{L}_2$
- Chaining: $(\mathcal{L}_0 \approx \mathcal{L}_1) \Rightarrow ((\mathcal{L} \diamond \mathcal{L}_0) \approx (\mathcal{L} \diamond \mathcal{L}_1))$

Proof chaining: We assume that $\mathcal{L}_0 \approx \mathcal{L}_1$. Let \mathcal{A} run in poly time. We want to show $(\mathcal{L} \diamond \mathcal{L}_0) \approx (\mathcal{L} \diamond \mathcal{L}_1)$:

$$\begin{split} &|\Pr\left[\mathcal{A} \diamond (\mathcal{L} \diamond \mathcal{L}_0) = 1\right] - \Pr\left[\mathcal{A} \diamond (\mathcal{L} \diamond \mathcal{L}_2) = 1\right]|\\ \hline \mathcal{A}' \coloneqq \mathcal{A} \diamond \mathcal{L} \\ &= |\Pr\left[(\mathcal{A} \diamond \mathcal{L}) \diamond \mathcal{L}_0 = 1\right] - \Pr\left[(\mathcal{A} \diamond \mathcal{L}) \diamond \mathcal{L}_1 = 1\right]|\\ &= |\Pr\left[\mathcal{A}' \diamond \mathcal{L}_0 = 1\right] - \Pr\left[\mathcal{A}' \diamond \mathcal{L}_1 = 1\right]| \end{split}$$

since \mathcal{A} runs in poly time, so does \mathcal{A}' . Hence using $\mathcal{L}_0 \approx \mathcal{L}_1$ the above is negl(λ).

Reduction

Six main methods:

- **1** Hybrid games: Decompose into a sequence of hybrid games (to make methods 2 6 easier)
- **Probabilities**: Explicitly compute the probability, and show equality or bound the statistical distance (statistical security only)
- **Equality**: Show that the two games are trivially doing exactly the same thing (variant of 2)

(e.g. code simply externalized to a sub-library, code that is simply inlined...)

- **Reduction**: show that if we can distinguish them, they A can be used to break a hard problem (factor numbers...)
- **5** Theorem/assumption: use a theorem already seen in the course or an assumption

6 Chaining: prove $\mathcal{L}_1 \approx \mathcal{L}_2$, then $\mathcal{A} \diamond \mathcal{L}_1 \approx \mathcal{A} \diamond \mathcal{L}_2$ We detail methods 1,2,3,4 now (5 & 6 trivial).

Proof = sequence of **hybrid** games:

Proof = sequence of **hybrid** games:

Proof = sequence of **hybrid** games:

By transitivity, if $\mathcal{L}_0 \approx \mathcal{G}_2 \approx \mathcal{G}_3 \approx \mathcal{G}_4 \approx \mathcal{L}_1$, then $\mathcal{L}_0 \approx \mathcal{L}_1$.

Just realize two libraries are trivially **doing the exact same thing** (e.g. move a call in a sub-library or inline a sub-library in a code) WARNING: Make sure variables are always well defined, with no naming collision and well **scoped** (a sub-library cannot refer to a variable of a parent library)

Are these two libraries equal?

A YesB No

Are these two libraries equal?

Yes
Variable are well scoped, inlined a sub-library
No X

Are these two libraries equal?

A Yes B No

Are these two libraries equal?

A Yes \not B No $\checkmark k$ is not defined in \mathcal{L}_2

Are these two libraries equal?

A Yes B No

Are these two libraries equal?

Yes
k is never used, safe to remove it
No

Method: compute probabilities

Theorem (One-time-pad uniform ciphertext) $\mathcal{L}_{otp-real}$ $\mathcal{L}_{otp-rand}$ $OTENC(m \in \{0, 1\}^{\lambda}):$ $k \notin \{0, 1\}^{\lambda}$ $k \notin \{0, 1\}^{\lambda}$ $c \notin \{0, 1\}^{\lambda}$ return $k \oplus m$ return c

Proof Let $m, \tilde{c} \in \{0, 1\}^{\lambda}$. In $\mathcal{L}_{otp-rand}$, $\Pr[OTENC(m) = \tilde{c}] = \frac{1}{2^{\lambda}}$ (uniform sampling). In $\mathcal{L}_{otp-real}$: $\Pr[OTENC(m) = \tilde{c}] = \Pr\left[k \oplus m = \tilde{c} \mid k \stackrel{\text{(s)}}{=} \{0, 1\}^{\lambda}\right] = \Pr\left[\tilde{c} \oplus m = k \mid k \stackrel{\text{(s)}}{=} \{0, 1\}^{\lambda}\right]$ $= \Pr\left[C = k \mid k \stackrel{\text{(s)}}{=} \{0, 1\}^{\lambda}\right] = \frac{1}{2^{\lambda}} = \Pr[OTENC(m) = \tilde{c}]$ where $C := \tilde{c} \oplus m$. Hence, $\mathcal{L}_{otp-real} = \mathcal{L}_{otp-range Collisson \mid 39}$

Method: reduction

All the above methods = interchangeability (statistical indistinguishability). What about **computational** indistinguishability? Either directly an assumption that the two libraries are hard to distinguish (possibly need an hybrid sequence first), otherwise:

Reduction!

Idea: to prove $\mathcal{L}_0 \approx \mathcal{L}_1$, assume $\mathcal{L}_0 \not\approx \mathcal{L}_1$, i.e. \exists polynomial adversary \mathcal{A} s.t. $|\Pr[\mathcal{A} \diamond \mathcal{L}_0 = 1] - \Pr[\mathcal{A} \diamond \mathcal{L}_1 = 1]|$. Use \mathcal{A} as a subroutine to break a hard problem (compute explicitly the success probability) \Rightarrow contradiction!

Method: reduction

Option 1: single huge reduction: \varkappa hard to write and read Option 2: hybrids + small reduction \checkmark Easier to read and verify

Often not even needed if the assumptions are already expressed as indistinguishable libraries

Some useful theorems

Bad event lemma

Bad event lemma

Let $\mathcal{L}_{\text{left}}$ and $\mathcal{L}_{\text{right}}$ be two libraries that define a variable named bad, that is initialized to 0. If $\mathcal{L}_{\text{left}}$ and $\mathcal{L}_{\text{right}}$ have identical code except for code blocks reachable only when bad = 1 (e.g. guarded with an "if bad = 1" statement), then:

$$|\Pr\left[\mathcal{A} \diamond \mathcal{L}_{\mathsf{left}} = 1\right] - \Pr\left[\mathcal{A} \diamond \mathcal{L}_{\mathsf{right}} = 1\right]| \le \Pr\left[\mathcal{A} \diamond \mathcal{L}_{\mathsf{left}} \text{ sets bad } = 1\right]$$
(1)

$$\begin{array}{l} \begin{array}{l} Proof: \text{Define } A_{\text{left}} \text{ the event } ``\mathcal{A} \diamond \mathcal{L}_{\text{left}} = 1", A_{\text{right}} \text{ the event } ``\mathcal{A} \diamond \mathcal{L}_{\text{right}} = 1", B_{\text{left}} \text{ the event } \\ \mathcal{A} \diamond \mathcal{L}_{\text{left}} \text{ sets bad} = 1, \text{ and } B_{\text{right}} \text{ the event } \mathcal{A} \diamond \mathcal{L}_{\text{left}} \text{ sets bad} = 1, \text{ and } \overline{} \text{ is the negation of event } \\ |\Pr\left[A_{\text{left}}\right] - \Pr\left[A_{\text{right}}\right]| = |\Pr\left[B_{\text{left}}\right]\Pr\left[A_{\text{left}}\right]\Pr\left[A_{\text{left}}\right] + \Pr\left[\overline{B}_{\text{left}}\right]\Pr\left[A_{\text{left}}\right]\overline{B}_{\text{left}}\right] \\ - \Pr\left[B_{\text{right}}\right]\Pr\left[A_{\text{right}}\right]\Pr\left[A_{\text{right}}\right] - \Pr\left[\overline{B}_{\text{right}}\right]\Pr\left[A_{\text{right}}\right]\overline{B}_{\text{right}}\right]| \\ \leq \Pr\left[\overline{B}_{\text{left}}\right] \underbrace{|\Pr\left[A_{\text{left}}\right|\overline{B}_{\text{left}}\right] - \Pr\left[A_{\text{right}}\right|\overline{B}_{\text{right}}\right]| + \Pr\left[B_{\text{left}}\right]\left|\Pr\left[A_{\text{left}}\right|B_{\text{left}}\right] - \Pr\left[A_{\text{right}}\right|B_{\text{right}}\right]| \\ = 0 \text{ (same code when bad is 0)} \leq 1 \\ \leq \Pr\left[B_{\text{left}}\right] \underbrace{|\operatorname{Triangle ineq. \& \Pr\left[B_{\text{left}}\right] = \Pr\left[B_{\text{right}}\right] (\text{identical code before setting bad)}} \end{array}$$

Application bad event lemma

Application bad event lemma

 $\square \mathcal{L}_{loff} \approx \mathcal{G}_2 = \mathcal{G}_1 \approx \mathcal{L}_{right}$ Léo Colisson | 44

To prove **in**security for a decision game between \mathcal{L}_0 and \mathcal{L}_1 :

- exhibits a given attacker \mathcal{A}
- compute $\varepsilon = |\Pr[\mathcal{A} \diamond \mathcal{L}_0 = 1] \Pr[\mathcal{A} \diamond \mathcal{L}_1 = 1]|$
- show that $\exists c \in \mathbb{N}$ s.t. ε is greater than $\frac{1}{\lambda^c}$

Small subtleties: we always consider infinite sequences of adversaries, based on security parameter λ . How do we define these algorithms?

- Uniform algorithm: same Turing machine for all instance size
- Non-uniform algorithm: sequence $\{C_{\lambda}\}_{\lambda \in \mathbb{N}}$ of circuits, or, equivalently, a fixed Turing machine with an auxiliary "advice" input, identical for all instances of same size

Non-uniform adversaries = slightly stronger (P/poly vs P) + somewhat unrealistic, but appear naturally e.g. in simulation-based security (see [Lindel 17] for examples)

Uniform vs non-uniform

In practice, **not a big deal**:

- Mostly changes assumptions: "YYY is hard to solve in polynomial time" \Rightarrow "YYY is hard against non-uniform adversaries"
- But all common assumptions are believed to hold in both cases anyway