Crypto Engineering 2024
Security definitions & proof methods

Léo COLISSON PALAIS

leo.colisson-palais@univ-grenoble-alpes.fr

https://leo.colisson.me/teaching.html

blenderpoint
{"type": "addMe"}

mailto:leo.colisson-palais@univ-grenoble-alpes.fr
https://leo.colisson.me/teaching.html

Some references

I've read
every one of

* Framework of this course:
The Joy of Cryptography, Mike Rosulek
https://joyofcryptography.com/

e Introduction to Modern Cryptography, Jonathan
Katz & Yehuda Lindell

e Foundation of Cryptography, Oded Goldreich

Léo Colisson | 2

blenderpoint
{"type": "addMe"}

https://joyofcryptography.com/

Symmetric cryptography

With me:

e 5CMs, 3TDs
e Symmetric cryptography, in particular:
® Symmetric encryption & block ciphers

e Authentication (MAC)
® Hash functions & specificity of password hashing

e Goals:

e Study security models

® See some constructions

® Analyse and prove their security

® See some bad ideas that you should NEVER DO

Léo Colisson | 3

blenderpoint
{"type": "addMe"}

Symmetric cryptography

With me:
e 5CMs, 3TDs
e Symmetric cryptography, in particular:
* Symmetric encryption & pleclcinbace
N iy th e;f. ct? c)'/\ﬁ;g & Important to define them rigorously, otherwise,
uthen 'ca' ion () easy to declare an insecure protocol secure.
¢ Hash functions €CiTI{ Also important to understand how these definitions
e Goals: influence the security guarantees
e Study security models
® See some constructions
® Analyse and prove their security
[]

See some bad ideas that you should NEVER DO

Léo Colisson | 3

blenderpoint
{"type": "addMe"}

Symmetric cryptography

Proofs guarantee security in a given attack model,

but remember, a proof is always a model!
With me: A CRYPTO NERD'S WHAT \JCULD
IMAGINATION ¢ ACTUALLY HAPPEN:
e 5CMs, 3TDs HIS LAPTOP's ENCRYPTED. HIS LAPTOP'S

. . . LETS BUILD A MILLION-DOLLAR DRUG HIM AND WIT HIN WITH
e Symmetric cryptography, in particul cwmamcm T THIS $5 WRENCH UNTIL
e Symmetric encryption & block ciph No Goop! ITs | | M TEUS L THE '
e Authentication (MAC)

U096 -BIT RSA\ \ GoT 1T,
® Hash functions & specifici
e Goals:

of pasg | &VLrun
e Study security models
* See some constructio

15 FOILED! ™ Qk %Q—{'O
® Analyse and prove their security

® See some bad ideas that you should NEVER DO

BLPGr'OUR

Léo Colisson | 3

blenderpoint
{"type": "addMe"}

Symmetric cryptography

With me:
e 5CMs, 3TDs

* (Symmetric|cryptography, in particular:

® Symmetric encryption & block ciphers

e Authentication (MAC)

® Hash functions & specificity of password hashing
* Goals:

e Study security models

® See some constructions

® Analyse and prove their security
® See some bad ideas that you should NEVER DO

Léo Colisson | 3

blenderpoint
{"type": "addMe"}

Notation Meaning
x<&EX X is obtained by sampling an element uniformly at random from the set X

y+« A(x) IfAisa(probabilistic) algorithm or a distribution, we run A on input x and store
the resultin x

X ;y Returns 1 (true) if x equals y, O (false) otherwise

negl(\) An arbitrary function f that is negligible (= smaller than any inverse
polynomial), i.e. Vc € N, limx_00 A°f(X) =0

poly(X) A function smaller than some polynomials, i.e. 3c € N,N € N,VA > N,f()\) < X°

Which functions are negligible?

O/ =%
O) = 5w
@ f() =271

NB: negl(}) + negl(A) = negl()), negl(A) x.negl(h) = negl(A), poly(A)negl(A) = negl()

blenderpoint
{"type": "addMe"}

Symmetric vs asymmetric cryptography

Symmetric encryption + Asymmetric encryption
Both parties share the same One party has an extra secret
secret information (trapdoor that can be

used to invert a function easily)

Léo Colisson | 5

blenderpoint
{"type": "addMe"}

blenderpoint
{"type": "insertVideo","folder": "Video_bank/Teaching/Encryption/","filename": "symmetric_vs_asymmetric.mp4","stops": "35,143,178,200,293,368,469","nbFrames": "480","firstFrame": "","lastFrame": "","speed": ""}

Mini-activity

Activity: design your own private-key cryptosystem (2mn) that we will analyse
later, i.e.:

e Key-generation k < Gen(1?)
e Encryption ¢ < Encg(m)
e Decryption m + Decg(c)

Léo Colisson | 6

blenderpoint
{"type": "addMe"}

Mini-activity

later, i.e.:
e Key-generation k < Gen(1?")
e Encryption ¢ < Encg(m)
e Decryption m + Decg(c)

Activity: desii n iour own private-key cryptosystem (2mn) that we will analyse
Key k € K

Léo Colisson | 6

blenderpoint
{"type": "addMe"}

Mini-activity

Security parameter A € N in unary form:
Gen runs in poly time in the size of its input

Activity: desii n iour own private-key cryptosystem (2mn) that we will analyse
Key k € K

later, i.e.:
e Key-generation k < Gen(1?")
e Encryption ¢ < Encg(m)
e Decryption m + Decg(c)

Léo Colisson | 6

blenderpoint
{"type": "addMe"}

Mini-activity

Security parameter A € N in unary form:
Gen runs in poly time in the size of its input

Activity: desii n iour own private-key cryptosystem (2mn) that we will analyse
Key k € K

later, i.e.:
e Key-generation k < Gen(1?")

* Encryption ¢ «+ Ency(my—(Message m € M)

e Decryption m + Decg(c)

Léo Colisson | 6

blenderpoint
{"type": "addMe"}

Mini-activity

Security parameter A € N in unary form:
Gen runs in poly time in the size of its input

Activity: desii n iour own private-key cryptosystem (2mn) that we will analyse
Key k € K

later, i.e.:
e Key-generation k < Gen(1?")

* Encryption ¢ «+ Ency(my—(Message m € M)

e Decryption m + Decg(c)

Léo Colisson | 6

blenderpoint
{"type": "addMe"}

Symmetric vs asymmetric cryptography

Asymmetric encryption Symmetric encryption

€' No need to share secrets & Need to share secrets

(e.g. internet)

(3] Stronger assumptions factoring, LWE... & Weaker assumptions
(functions highly structured) (less structure)

& Less efficient £ More efficient

& No statistical security < Statistical security possible

(but impractical)

= Hybrid systems: combine both = best of both world (efficient + no secret
to distribute)

Léo Colisson | 7

blenderpoint
{"type": "addMe"}

Cryptography is not (just) encryption

WARNING
Cryptography is not just about encryption: . cﬂvplgl_innﬁ
e cryptocurrency (bitcoin...) .-EQL“";HAFHV

™ O

® multi-party computing (MPC) ﬁ’

® signature
® commitments

® quantum money

NOT
e zero-knowledge (ZK) proofs "c nvao c " n HEN c I Es")

® electronic voting

e position verification

Léo Colisson | 8

blenderpoint
{"type": "addMe"}

Obfustopia

Heuristica

Algorithmica

Impagliazzo's worlds

One can make a program code unreadable Obfuscation

Asymmetric cryptography
One way functions exist, no public key cryptography ZK-proofs Secret sharing

Commitments

NP problems hard in practice, but no one way functions exist

NP problems hard in the worst case, easy in practice (average) No (interesting) cryptography

P = NP (no hard problem)
One-Time Pad

Léo Colisson | 9

blenderpoint
{"type": "addMe"}

Obfustopia

Heuristica

Algorithmica

Impagliazzo's worlds

One can make a program code unreadable Obfuscation

Asymmetric cryptography
One way functions exist, no public key cryptography ZK-proofs Secret sharing

Commitments

NP problems hard in practice, but no one way functions exist

NP problems hard in the worst case, easy in practice (average) No (interesting) cryptography

P = NP (no hard problem)

One-Time Pad

Big question (harder than P = NP): in which world are we?

Léo Colisson | 9

blenderpoint
{"type": "addMe"}

Obfustopia

Our focus —

Pessiland

Heuristica

Algorithmica

Impagliazzo's worlds

One can make a program code unreadable Obfuscation

Asymmetric cryptography
One way functions exist, no public key cryptography ZK-proofs Secret sharing

Commitments

NP problems hard in practice, but no one way functions exist

NP problems hard in the worst case, easy in practice (average) No (interesting) cryptography

P = NP (no hard problem)

One-Time Pad

Big question (harder than P = NP): in which world are we?

Léo Colisson | 9

blenderpoint
{"type": "addMe"}

No absolute security

Since we don't know in which world we are = no absolute security (except
One-Time Pad) = always rely on some assumptions:
“Computational” assumptions Setup assumptions

= adversary cannot ... = parties have access to ...

Harness of factoring/elliptic curves Plain model

(broken against quantum computers) Common Reference String (CRS)
Learning With Errors Random Oracle (RO) model
Code-based Crytography

Existence of one-way functions (functions
hard to invert), pseudo-random
permutations...

Indistinguishable Obfuscation (iO)...

Replacing RO with hash function = heuristic
(no proof that the protocol will still be secure)

Important to clearly state them and understand their implications!

Léo Colisson | 10

blenderpoint
{"type": "addMe"}

Security models

When designing a crypto system, we want to say:

Setup assumption [Computational assumptionh

“The protocol XXX is secure in the plain/CRS/RO model assuming YYY is hard.”

Léo Colisson | 11

blenderpoint
{"type": "addMe"}

Security models

When designing a crypto system, we want to say:

Setup assumption [Computational assumptionh

“The protocol XXX is secure in the plain/CRS/RO model assuming YYY is hard.”

72

Léo Colisson | 11

blenderpoint
{"type": "addMe"}

Security models

When designing a crypto system, we want to say:

Setup assumption [Computational assumption

“The protocol XXX is secure in the plain/CRS/RO model assuming YYY is hard.”

security model

= We also need to define a security model (a.k.a attack model)

= expectations in term of security (e.g. the adversary should not learn the
message)

Léo Colisson | 11

blenderpoint
{"type": "addMe"}

Security models

Easy to intuitively say what we expect, hard to find a good security model
that captures all possible unwanted behaviors:

E.g. for encryption:

Attempt 1: “Given an encryption of m, an adversary should not be able to recover
m". Is this a good security definition? (if not, find a scenario where this could go
wrong)

O Yes
® No

Léo Colisson | 12

blenderpoint
{"type": "addMe"}

Security models

Easy to intuitively say what we expect, hard to find a good security model
that captures all possible unwanted behaviors:

E.g. for encryption:

Attempt 1: “Given an encryption of m, an adversary should not be able to recover
m". Is this a good security definition? (if not, find a scenario where this could go
wrong)

QYesx

® No J Recovering 3/4 of the message is already a big issue! E.g.
m="??2???2?2?2?2?22???, hence we attack tomorrow"

Léo Colisson | 12

blenderpoint
{"type": "addMe"}

Security models

Attempt 2: “Given an encryption of m, an adversary should not be able to recover
any bit of m". Is this a good security definition? (if not, find a scenario where this
could go wrong)

0O VYes
® No

Léo Colisson | 13

blenderpoint
{"type": "addMe"}

Security models

Attempt 2: “Given an encryption of m, an adversary should not be able to recover
any bit of m". Is this a good security definition? (if not, find a scenario where this
could go wrong)

O Yes x
7 ® No / Knowing which groups of bits are different already leaks a lot:
[

Léo Colisson | 13

blenderpoint
{"type": "addMe"}

NEVER DO THIS

AN ENCRYPTION MUST ALWAYS BE
NON-DETERMINISTIC!!

blenderpoint
{"type": "addMe"}

NEVER DO THIS

[Was it the case of your encryption algorithm?]

AN ENCRYPTIOI\A MUST ALWAYS BE
NON-DETERMINISTIC!!

blenderpoint
{"type": "addMe"}

NEVER DO THIS

[Was it the case of your encryption algorithm?]

AN ENCRYPTIOI\A MUST ALWAYS BE
NON-DETERMINISTIC!!

NEVER USE A HOME-MADE ENCRYPTION,
IT WILL BE INSECURE!!!

blenderpoint
{"type": "addMe"}

Security models

Attempt 3: “Given 2 random messages my and m; (known to the adversary), an
adversary should not be able to tell if the message m, or m; was encrypted.”. Is
this a good security definition? (if not, find a scenario where this could go wrong)

O Yes
® No

Léo Colisson | 15

blenderpoint
{"type": "addMe"}

Security models

Attempt 3: “Given 2 random messages my and m; (known to the adversary), an
adversary should not be able to tell if the message m, or m; was encrypted.”. Is
this a good security definition? (if not, find a scenario where this could go wrong)

QYesx

® No / Good enough if we encrypt random messages...But in practice we
encrypt precise messages, say “Yes” and “No”, and it could be a very bad
encryption for these precise two messages while still being good on all
others.

Léo Colisson | 15

blenderpoint
{"type": "addMe"}

Security models

Attempt 4: “For all messages my and my (known to the adversary), an adversary
should not be able to tell if the message m, or m; was encrypted.”. Is this a good
security definition? (if not, find a scenario where this could go wrong)

O Yes
O No

Léo Colisson | 16

blenderpoint
{"type": "addMe"}

Security models

Attempt 4: “For all messages my and my (known to the adversary), an adversary
should not be able to tell if the message m, or m; was encrypted.”. Is this a good
security definition? (if not, find a scenario where this could go wrong)

QYesx

O No / This is actually too strong: when my = k and m; = 0, the adversary
can just use my (i.e. k) to decrypt. And if we also require k to be sampled
after mg (so that mp and k are independent), this is too weak: in practice,
the message may depend on k (e.g. after seeing a previous encryption).

Léo Colisson | 16

blenderpoint
{"type": "addMe"}

Security models

Attempt 4: “For all messages my and my (known to the adversary), an adversary
should not be able to tell if the message m, or m; was encrypted.”. Is this a good
security definition? (if not, find a scenario where this could go wrong)

QYesx

O No / This is actually too strong: when my = k and m; = 0, the adversary
can just use my (i.e. k) to decrypt. And if we also require k to be sampled
after mg (so that mp and k are independent), this is too weak: in practice,
the message may depend on k (e.g. after seeing a previous encryption).

The adversary should choose m; and m,, but when? What can the
adversary use before choosing them? How to formalize this?

Léo Colisson | 16

blenderpoint
{"type": "addMe"}

Security models

So how to define a secure protocol/encryption? =- There is not one, but
multiple definitions of security (with different guarantees)

3 classes of security models:
1: Game-based security = Fix a challenger (defines the security goals):

Stronger models

Challenger Adversary

General composability
Sequential composability

Game-based security

Win/Lose

Secure if for any adversary, the probability of winning is “low”
(might be 1/2 + negl(X) or 0 4 negl(\) depending on the game)

Léo Colisson | 17

blenderpoint
{"type": "addMe"}

Security models

So how to define a secure protocol/encryption? =- There is not one, but
multiple definitions of security (with different guarantees)

3 classes of security models:
1: Game-based security = Fix a challenger (defines the security goals):

Challenger
Stronger models m <& {07 1}A
k + Gen(1%)

c Adversa
¢ + Encx(m) Y

General composability

Sequential composability =
returnm=m| ™

Win(=true)/Lose(=false)

Secure if for any adversary, the probability of winning is “low”
(might be 1/2 + negl(X) or 0 4 negl(\) depending on the game)

Léo Colisson | 17

Game-based security

blenderpoint
{"type": "addMe"}

Security models

So how to define a secure protocol/encryption? = There is not one, but

multiple definitions of 4 Q: Is this challenger corresponding to the
“don’t learn m” (A) or “learn no bit about m” (B) security notion?

3 classes of security models:
1: Game-based security = Fix a challenger (defines the security goals):

Challenger
Stronger models m <& {07 1}A
k + Gen(1%)

c Adversa
¢ + Encx(m) Y

General composability

Sequential composability =
returnm=m| ™

Win(=true)/Lose(=false)

Secure if for any adversary, the probability of winning is “low”
(might be 1/2 + negl(X) or 0 4 negl(\) depending on the game)

Léo Colisson | 17

Game-based security

blenderpoint
{"type": "addMe"}

Security models

So how to define a secure protocol/encryption? =- There is not one, but
multiple definitions of security (with different guarantees)

3 classes of security models:

2 & 3: Composable frameworks = security based on a simulator that trans-
lates attacks on the real protocol to attacks on a functionality (trusted party)
in an ideal world, supposed to be secure by definition:

Stronger models PR EITEEEREEEETEETTEEE T TR | e
}:Otp—enc:: KEY .:Otp—dec:: poTTTTEEEEEEE e

General composability
Sequential composability

Game-based security

Main frameworks: standalone security (sequential), Universal Composability
[Can10], Abstract Crytography [MR11,M12] (general)

Léo Colisson | 17

blenderpoint
{"type": "addMe"}

Security frameworks: comparison

Composable/simulation-

Game-based security based security

Simple to understand / x
Simple to see if this is the
“good” definition x (
Stronger guarantees x /
Notions natural to express Signatures MPC
Security guaranteed when
protocols are composed x /
Impossibility results are rare / x
Example .Of. gquwalent IND-CPA Semantic-security
definitions

S L I

Léo Colisson | 18

blenderpoint
{"type": "addMe"}

Security frameworks: comparison

(Focus of this course

Composable/simulation-

Game-based security based security
Simple to understand

Simple to see if this is the
“good” definition

X X <
<

Stronger guarantees
Notions natural to express Signatures MPC

Security guaranteed when
protocols are composed

4 X
®

Impossibility results are rare

Example of equivalent

definitions IND-CPA Semantic-security

S L I

Léo Colisson | 18

blenderpoint
{"type": "addMe"}

Game-based security

The challenger models what the adversary is allowed to do and what is
considered to be “bad” in term of security:

e Which message/function can the adversary read/call?
e Passive (= eavedropper) or active adversary (= man in the middle)?

e Blackbox or with physical access to a device?

¢ Side channel attacks (= record electric consumption, noise...)
® Fault attacks (e.g. shooting magnetic waves to disturb a circuit...)

e What must be kept secret? (based on the return value of the challenger)

Léo Colisson | 19

blenderpoint
{"type": "addMe"}

Kerckhoff's principle

Kerckhoff’s principle

The adversaries knows all details of the protocol (but cannot know di-
rectly the values sampled while running the protocol)

Léo Colisson | 20

blenderpoint
{"type": "addMe"}

Questions

Consider the following challenger: is it modeling:
@ a passive adversary,
® an active one?

Challenger
m & {0,132
k < Gen(1") | .

Adversar
¢ < Encg(m) Y y

m

returnm=m
| Win(=true)/Lose(=false)

Léo Colisson | 21

blenderpoint
{"type": "addMe"}

Questions

Consider the following challenger, and assume that for any adversary A, the
probability of winning this game is negligible. Let A be an adversary, then:

@ The probability for A to learn x is 0

@ A has negligible chance to learn the first half of x
@ A has negligible chance to learn all bits of x

® A has negligible chance to learn all bits of r

@ If in practice an adversary can observe arbitrary pairs of messages and
their encryption, they are still unable to recover x

Challenger
x & {0,1}*
r<{0,1}*
k « Gen(1%) Adversary
¢+ Ence(x|r)| ¢

returnx =Xx | x,7

Léo Colisson | 22

blenderpoint
{"type": "addMe"}

Equivalent notations/formulations

Challenger
m & {0,1}*
A
ke Gen1) | ¢ Adversary | P o
¢ + Encg(m) = iy [m=m]
m keGen(1*)
- c+Enc,(m)
returnm=m — wAo)

i

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

Equivalent notations/formulations

Challenger
m & {0,1}*
A
ke Gen1) | ¢ Adversary | P o
¢ + Encg(m) = iy [m=m]
m keGen(1*)
- c+Enc,(m)
returnm=m Ao

i

[If A has oracle access to Ency(-), we write AE”Ck]

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

Equivalent notations/formulations

Lm
k «+ Gen(1*)
Challenger —— g;cg.”ck(m)
m & {0, 1} return ¢
n(1*
K Gen(1%) C |Adversary - -
¢ «+ Encg(m) = Pr [m=m]= Pr [m=m]
k . me&.{0,1}> mé{0,1}*
m k+Gen(1*) me—A o Lm
return m = m S cEnc(m)
— ’h“A(C) A ¢ £ means that A has oracle ac-

i cess to £ (called library), like A£ but
this notation is used in Joy of cryptog-
raphy and is practical when chaining
multiple libraries.

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

Equivalent notations/formulations

Lm
k + Gen(1%)
Challenger S Z§C(E-nck(m)
$ A a2=1u.
m < {0,1} return ¢
k + Gen(1*)
C | Adversar - -
¢ «+ Encg(m) Y= P [m=m]= Pr [m=m]
K _ me{0,1}> me{0,1}>
m k«Gen(1*) Ao Lm
~ c«+—Enci(m)
returnm=m — wAo)
i From Joy of cryptography:
Verbose. hard to manipulate More standard but often easier to re-use and
' formall P harder to manipulate and write/check proofs (explicit
y check dependency, small

reductions easy to check)
But fundamentally the same, just different presentations!

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

Game-based security

We can also model the power of an adversary (typically modeled as a Turing
machine) in the quantification of the adversary:

e “For any unbounded A4, the probability of winning is low” =
statistical/information theoretic security

e “For any polynomially bounded adversary A, the probability of winning
is low” = computational security

If the running time of A(n) is v/n, is A polynomial?
O Yes
® No

Léo Colisson | 24

blenderpoint
{"type": "addMe"}

Game-based security

We can also model the power of an adversary (typically modeled as a Turing
machine) in the quantification of the adversary:

e “For any unbounded A4, the probability of winning is low” =
statistical/information theoretic security

e “For any polynomially bounded adversary A, the probability of winning
is low” = computational security

If the running time of A(n) is v/n, is A polynomial?
0 Yes ¥

® No " It must run in polynomial time in the length (log(n)) of
the input (otherwise factoring is efficient!).

Léo Colisson | 24

blenderpoint
{"type": "addMe"}

Game-based security

We can also model the power of an adversary (typically modeled as a Turing
machine) in the quantification of the adversar(what s low?)

e “For any unbounded A4, the probability of winning is low” =
statistical/information theoretic security

e “For any polynomially bounded adversary A, the probability of winning
is low” = computational security

If the running time of A(n) is v/n, is A polynomial?
O Yes
® No

Léo Colisson | 24

blenderpoint
{"type": "addMe"}

Search vs decision

Definition of “low” = depends on the challenger, but typically we have 2 cases:
e Search problem: adversary needs to find a bit-string (e.g. “decrypt this
message”): low = negl(\)
e Decision problem: adversary needs to find a single bit b (e.g. “is this an
encryption of my or my?”): low = 1/2 4+ negl(\)
= We define the advantage:

Adv4(\) =

Pr [A(lA)oL‘O - 1} —Pr [A(l’\)o,/:l - 1” < negl())

NB: theoretically, security is an asymptotic notion!

Léo Colisson | 25

blenderpoint
{"type": "addMe"}

Search vs decision

Challenger
Consider the following m & 0,1}
challenger, is it modeling: ke Gen(1Y) | Adversary
0 a search problem ¢ + Ence(m)
® a decision problem et i — i

!

Léo Colisson | 26

blenderpoint
{"type": "addMe"}

Search vs decision

Challenger
Consider the following m & 0,1}
challenger, is it modeling: ke Gen(1Y) | Adversary
O a search problem ¢ + Ence(m)
©® a decision problem ¥ et i — i

!

Léo Colisson | 26

blenderpoint
{"type": "addMe"}

Asymptotic vs actual security

In theoretical analysis, security is asymptotic. In practice: How to choose) ?
Typically:

O Study the best known attacks, count the number of operations T and
the advantage ¢ (trade-off time/precision), consider that the actual
number of operations is roughly’ T/e.
= this protocol has log(T/¢)-bits of security.

@® Realize that:

e 240 gperations is really easy to do (small raspberry pi cluster)
280 operations doable with large CPU/GPU cluster

280 operations doable with an ASIC cluster (bitcoin mining)
2128 gperations = very hard (next slide)

"More details in [Watanabe, Yasunaga 2021] and [Micciancio, Walter 2018].

Léo Colisson | 27

blenderpoint
{"type": "addMe"}

How big is 21282

Say that:
* problem is parallelizable

¢ you can access all 500 best super-computers = 10 000 000 000 GFLOPS
(FLOPS = floating point operations per second)

Then, you need in total:

2128
10 x 109 x 109 x 3600 x 24 x 365

1 000 000 000 000 years

(roughly 4x age of earth)

Léo Colisson | 28

blenderpoint
{"type": "addMe"}

How to write security proofs

blenderpoint
{"type": "addMe"}

Focus: decision problems. Goal: bound |Pr[Ao Ly =1] - Pr[A<c Ly =1]]|.

Definition (interchangeability)

Two libraries £y and £, are interchangeable (or equal), written Ly = L4, if
for any adversary A,

Pr[AOEO = 1] :Pr[Aoﬁl :1]

Léo Colisson | 30

blenderpoint
{"type": "addMe"}

Definition (Indistinguishability)

Two libraries £y and £, are indistinguishable, written Ly ~ L4, if for any
adversary A(1*) running in polynomial time and outputting a single bit:

‘Pr [A(m oLy = 1} _Pr [A(V) oLy = 1” < negl()\)

Léo Colisson | 31

blenderpoint
{"type": "addMe"}

Basic properties

Properties (also hold when replacing ~ with =)

¢ Transitivity: (Lo~ L) A (L1 = Ly) = Lo= Ly
¢ Chaining: (Lo~ L1) = (Lo Lo) = (Lo L))

Proof transitivity (basically triangle inequality): We assume Lo =~ £4 A L1 = L,. Let A run in poly-
nomial time. Then by definition:

|[Pr[AoLy=1]—Pr[Aoc Ly =1]|<neglM)A|Pr[AoL;=1]—Pr[AoL; =1]| < negl(N)
But

|Pr{AoLy=1]-Pr[Ao Ly =1]]
=|Pr[AcLy=1]-Pr[AcL1=1]+Pr[Ao L1 =1]-Pr[Ac Ly =1]]
<|Pr[AoLy=1]-Pr[AcLy=1]|+|Pr[AoL;=1]-Pr[Ac Ly =1]|
< negl(A) + negl(A\) < negl(}))

Léo Colisson | 32

blenderpoint
{"type": "addMe"}

Basic properties

Properties (also hold when replacing ~ with =)

¢ Transitivity: (Lo~ L) A (L1 = Ly) = Lo= Ly
® Chaining: (Lo = L1) = (Lo Ly) = (L o L1))

Proof chaining: We assume that £y ~ £;. Let A run in poly time. We want to show (£ ¢ £o) ~
(L < Ll):

|Pr[Ao(LoLy)=1]—Pr[Ao(LoLy)=1]]
= |Pr[(AoL)oLy=1]—Pr[(AoL)oLy =1]|
Lipr[AoLo=1]-Pr[A oL =1]|

since A runs in poly time, so does A’. Hence using £, ~ £; the above is negl(}). O

Léo Colisson | 32

blenderpoint
{"type": "addMe"}

Six main methods:
© Hybrid games: Decompose into a sequence of hybrid games (to make
methods 2 - 6 easier)
@ Probabilities: Explicitly compute the probability, and show equality or
bound the statistical distance (statistical security only)
© Equality: Show that the two games are trivially doing exactly the same
thing (variant of 2)
(e.g. code simply externalized to a sub-library, code that is simply
inlined...)
@ Reduction: show that if we can distinguish them, they A can be used to
break a hard problem (factor numbers...)
© Theorem/assumption: use a theorem already seen in the course or an
assumption
0O Chaining: prove L1 ~ Ly, then Ao L1~ Ao Ly
We detail methods 1,2,3,4 now (5 & 6 trivial).

Léo Colisson | 33

blenderpoint
{"type": "addMe"}

Hybrid games

Proof = sequence of hybrid games:

blenderpoint
{"type": "addMe"}

Hybrid games

Proof = sequence of hybrid games:

y

blenderpoint
{"type": "addMe"}

Hybrid games

Proof = sequence of hybrid games:

V 8

blenderpoint
{"type": "addMe"}

Hybrid games

Proof = sequence of hybrid games:

blenderpoint
{"type": "addMe"}

Hybrid games

Proof = sequence of hybrid games:

blenderpoint
{"type": "addMe"}

Hybrid games

Proof = sequence of hybrid games:

Léo Colisson | 34

blenderpoint
{"type": "addMe"}

Hybrid games

Proof = sequence of hybrid games:

By transitivity, if Lo ~ G2 &~ Gs ~ G4 &~ L4, then Ly ~ L;.

Léo Colisson | 34

blenderpoint
{"type": "addMe"}

Just realize two libraries are trivially doing the exact same thing (e.g. move a
call in a sub-library or inline a sub-library in a code)

WARNING: Make sure variables are always well defined, with no naming
collision and well scoped (a sub-library cannot refer to a variable of a parent
library)

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

Equality

Are these two libraries equal?

cTxT(m): Lotp-rand crxt(m):)
ki — {0,1}* ki {6,1
AR crxt’(m’): 1= 16,1}
cg=kidm 0—/1 = =k ®m
¢y := cTxT’(c1) c—{0,1} cp — {0,1}4
return c; return ¢ return c;

O Yes
® No

Léo Colisson | 36

blenderpoint
{"type": "addMe"}

Are these two libraries equal?

CTXT(m): Lutp-rand CTXT(m): N
ki — {0,1}* ki —{0,1
AR crxt’(m’): 1= 16,1}
cg=kidm 0—/1 = =k ®m
¢y := cTxT’(c1) c—{0,1} cp — {0,1}4
return c; return ¢ return c;

O Yes Variable are well scoped, inlined a sub-library

O No ¥

Léo Colisson | 36

blenderpoint
{"type": "addMe"}

Are these two libraries equal?

Lo : I 2
k'« Gen(1") _ |k + Gen(1?") ¢ + Encg(m)
¢ + Encg(m) | = . o)
GETO: GET(): MYGET():
—_— return MYGET() return c
return c

O Yes
® No

Léo Colisson | 37

blenderpoint
{"type": "addMe"}

Are these two libraries equal?

b Z L
I;% Ifnecn((in)) _|k<+Gen(1") | |c <« Ency(m)
GE: Sk GET(): MYGET():
GETU: return MYGET() return ¢
return ¢

O Yes ¥
® No kis not defined in £,

Léo Colisson | 37

blenderpoint
{"type": "addMe"}

Are these two libraries equal?

Lo I
k «+ Gen(1Y)|_ .
GET(): = | GETU:
return 42 return 42

O Yes
® No

Léo Colisson | 38

blenderpoint
{"type": "addMe"}

Are these two libraries equal?

Lo o
k + Gen(1Y)| _ .
GET(): = | SETO:
return 42 return 42

O Yes / k is never used, safe to remove it

O No ¥

Léo Colisson | 38

blenderpoint
{"type": "addMe"}

Method: compute probabilities

Theorem (One-time-pad uniform ciphertext)

['otp-real ﬁotp-rand
OTENC(m € {0, 1}*):| _ | oTENC(m € {0, 1}*):
k& {013 c& {013
returnk @ m return c

Proof Let m, ¢ € {0, 1}*.In Lotp-rand, Pr[OTENC(M) = €] = 2% (uniform sampling). In Lotp-real:
Pr[OTENC(m) = &] = Pr [keam: ek & {@,1]%] = Pr [&@m: k| k& {@,1}*]
—pr[Cc=k|ke(0,1)] = 2% — Pr[OTENC(m) = ¢]

where C := ¢ & m. Hence, Lotp-real = Lotprand, ..., | 39

blenderpoint
{"type": "addMe"}

Method: reduction

All the above methods = interchangeability (statistical indistinguishability).
What about computational indistinguishability? Either directly an
assumption that the two libraries are hard to distinguish (possibly need an
hybrid sequence first), otherwise:

Reduction!

Attacker against problem YYY <« A

Idea: to prove Ly =~ L4, assume Ly % L4, i.e. 3 polynomial adversary A s.t.
|Pr{AoLy=1]—-Pr[Ao Ly =1]|. Use A as a subroutine to break a hard
problem (compute explicitly the success probability) = contradiction!

Léo Colisson | 40

blenderpoint
{"type": "addMe"}

Method: reduction

Option 1: single huge reduction: hard to write and read
Option 2: hybrids + small reduction " Easier to read and verify

Often not even needed if the
assumptions are already expressed
as indistinguishable libraries

Léo Colisson | 41

blenderpoint
{"type": "addMe"}

Some useful theorems

blenderpoint
{"type": "addMe"}

Bad event lemma

Bad event lemma

Let Lierr and Lyighe be two libraries that define a variable named bad, that is initialized

to 0. If Lier and Lyigne have identical code except for code blocks reachable only when
bad =1 (e.g. guarded with an “if bad = 1" statement), then:

|[Pr{ Ao L =1] —PI‘[.AO,Cright:1] | < Pr[Ao L setsbad =1] (1)

Proof: Define Ajer; the event “A o Liee = 1", Arign the event “A o Lyigne = 17, Bier the event
Ao L sets bad = 1, and Byigh, the event A o Lier; sets bad = 1, and ~ is the negation of event -.

| Pr [Aleft] —Pr [Aright] | =|Pr [Bleft]Pr [Aleft ’ Bleft] +Pr [Bleft] Pr [Aleft | Bleft]
—Pr [Bright] Pr [Aright | Bright] —Pr [Bright} Pr [Aright ‘ Bright] ‘
< Pr[Biett | | Pr [Auett | Biert | — Pr [Arignt | Bright | | + Pr [Biett] | Pr [Aest | Biett | — Pr [Arignt | Brignt] |

=0 (same code when bad is 0)

<1

< Pr [Bleft] Triangle ineq. & Pr [Bjgf] = Pr {Bright} (identical code before setting bad)]

Léo Colisson | 43

blenderpoint
{"type": "addMe"}

Application bad event lemma

We want to show that

two hybrid games:

. A student already wrote these

/L
et cright
PREDICT(X): ~ .
TsE{0, 1P PREDICT(X):
2 return false
returnx =s
G G
bad := 0 bad := 0
PREDICT(X): PREDICT(X):
& 1o 1A &g 1
s<—?{0,1} and tse]){@,l}
ifx=s: ifx=s:
bad:=1 bad:=1
return true
return false return false

.How can you finish the proof?

O Lk = 61~ Go = Liight
O Lir ~ G1 = G2 = Liight
@ Lir = G2 ~ G1 = Liight
® Lk ~ G2 = G1 = Liight

Léo Colisson | 44

blenderpoint
{"type": "addMe"}

Application bad event lemma

Liefe

cright
We want to show that P“:i‘}g‘)lzp ~ |erepicrx): |- A student already wrote these
Ty return false
returnx = s
G G2
bad := 0 bad := 0
PREDICT(X): PREDICT(X):
. A -
two hybrid games:| s< (2.1}* | and ?f&.ﬂg’ 13" |. How can you finish the proof?
ifx=s: ifx=s:
bad:=1 bad:=1
return true
return false return false

O Lk = 61~ Go = Liight

O Li ~ G1 = G2 & Leignt

G Lieft = G2 = G1 = Lrignt / We use the bad event lemma to show G, ~ G;
(Pr[bad =1] = % = negl(}))

® .. ~C—C ~ [, LéoColisson | 44

blenderpoint
{"type": "addMe"}

How to prove INsecurity?

blenderpoint
{"type": "addMe"}

How to prove INsecurity

To prove insecurity for a decision game between £y and L4:
¢ exhibits a given attacker A
e computee = |Pr[AoLy=1]-Pr[Ac L =1]]
e show that 3¢ € N s.t. ¢ is greater than %

Léo Colisson | 46

blenderpoint
{"type": "addMe"}

How to prove INsecurity

Which attacker can distinguish these two libraries, and with which advantage?

b
£ots$—real Et o
otsy-ran
crxt(m € {0, 1}%): crxr(m € {0, 1}):
k — {0,1}* ——
C'—k8;m c—{0.1)"
- return ¢
return c

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

How to prove INsecurity

Which attacker can distinguish these two libraries, and with which advantage?

2
£ots$—real)
3 ots$-rand
€ {0,1}"):
cTxT(m € { 5) crxt(m € {0, 1}1):
k « {0,1} 7
ci=k&m ¢ {01}
return c
return c
A
0 C:= CTXT(Q)A) ,advantage 1/4 (A), 1/2(B),1/2 — = (C)or 1 — L (D)

return ¢ = 0*

A

@ |c—cxr(1?) |, advantage 1/4 (E), 1/2 (F), 1/2 — 5% (G)or 1 — .k (H)
return ¢ = 0*

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

How to prove INsecurity

Which attacker can distinguish these two libraries, and with which advantage?

2
£ots$—real)
3 ots$-rand
cTxXT(m € {0/,11}): crxr(m € {0, 1}):
k « {0,1} 7
ci=k&m ¢ {01}
return c
return c
A
0 C:= CTXT(Q)A) ,advantage 1/4 (A), 1/2(B),1/2 — = (C)or 1 — LD /)

return ¢ = 0*

A

@ |c—cxr(1?) |, advantage 1/4 (E), 1/2 (F), 1/2 — 5% (G)or 1 — .k (H)
return ¢ = 0*

Léo Colisson | 47

blenderpoint
{"type": "addMe"}

Uniform vs non-uniform

Small subtleties: we always consider infinite sequences of adversaries, based
on security parameter \. How do we define these algorithms?

e Uniform algorithm: same Turing machine for all instance size

e Non-uniform algorithm: sequence {C,} cy Of circuits, or, equivalently, a
fixed Turing machine with an auxiliary “advice” input, identical for all
instances of same size

Non-uniform adversaries = slightly stronger (P/poly vs P) + somewhat
unrealistic, but appear naturally e.g. in simulation-based security (see [Lindel
17] for examples)

Léo Colisson | 48

blenderpoint
{"type": "addMe"}

Uniform vs non-uniform

In practice, not a big deal:

¢ Mostly changes assumptions: “YYY is hard to solve in polynomial time” =
“YYY is hard against non-uniform adversaries”

e But all common assumptions are believed to hold in both cases anyway

Léo Colisson | 49

blenderpoint
{"type": "addMe"}

