
Crypto Engineering 2024
Symmetric cryptography

Léo Colisson Palais

leo.colisson-palais@univ-grenoble-alpes.fr
https://leo.colisson.me/teaching.html


blenderpoint
{"type": "addMe"}

mailto:leo.colisson-palais@univ-grenoble-alpes.fr
https://leo.colisson.me/teaching.html


Reminder symmetric encryption &
IND-CPA security


blenderpoint
{"type": "addMe"}




blenderpoint
{"type": "insertVideo","folder": "Video_bank/Teaching/Encryption/","filename": "symmetric_vs_asymmetric.mp4","stops": "35,143,178,200,293,368,469","nbFrames": "480","firstFrame": "","lastFrame": "","speed": ""}















Symmetric encryption

Definition (Symmetric encryption scheme)

Let K,M, C be the set of, respectively, keys, messages and ciphertexts.
An encryption scheme is a tuple (Gen,Enc,Dec) of polynomial algorithm:

• Key-generation k
Key k ∈ K

← Gen(1λ

Security parameter λ ∈ N in unary form:
Gen runs in poly time in the size of its input

)

• Encryption c← Enck(m Message m ∈M, sometimes written Enc(k,m).)

• Decryption m← Deck(c Ciphertext c ∈ C)

that must be correct, i.e. such that for any m ∈M:

Pr
k←K

[Deck(Enck(m)) = m ] = 1

Léo Colisson | 3


blenderpoint
{"type": "addMe"}



One-Time Pad

Definition (One-Time Pad, OTP)

The One-Time Pad is the crypto-system defined as
M = K = K = {0,1}λ and (Gen,Enc,Dec) as:

OTP
Gen(1λ):
k $← {0,1}λ
return k

Enc(k,m):
return k ⊕m

Dec(k, c):
return k ⊕ c

Correctness: ∀k,Dec(k,Enc(k,m)) = k ⊕ k ⊕m = m.

Léo Colisson | 4


blenderpoint
{"type": "addMe"}



Security of OTP

Last episode: hard to find a good notion of security, but it seems like the
adversary should choose two messages m0 and m1, and tell if they obtained
Enck(m0) or Enck(m1). Still an important question:

What do we give to the adversary before they get to
choose m0 and m1?

Léo Colisson | 5


blenderpoint
{"type": "addMe"}



Security of OTP

First (weak) security definition:
• We give NOTHING
• We change the key at any new encryption

More formally:

Definition (One-time secrecy)

An encryption scheme Σ = (Gen,Enc,Dec) with key-space K, message-
spaceM and cipher-text space C is one-time secure if:

LΣ
ots-L

eavesdrop(mL,mR ∈M):
k ← Gen(1λ)
return Enck(mL)

≡

LΣ
ots-R

eavesdrop(mL,mR ∈M):
k ← Gen(1λ)
return Enck(mR)

Léo Colisson | 6


blenderpoint
{"type": "addMe"}



Security of OTP

Theorem

OTP is one-time secure

Proof

LΣ
ots-L

eavesdrop(mL,mR ∈M):
k ← Gen(1λ)
return Enck(mL)

≡

Def. OTP

eavesdrop(mL,mR ∈M):
k $← {0,1}λ
return k ⊕mL

≡

Externalize code

eavesdrop(mL,mR ∈M):
return otenc(mL)

⋄
otenc(m):
k $← {0,1}λ
return k ⊕m

≡

Thm OTP uniform ciphertext from first lecture

eavesdrop(mL,mR ∈M):
return otenc(mL)

⋄
otenc(m):
k $← {0,1}λ
return k

≡

Inline subroutine

eavesdrop(mL,mR ∈M):
k $← {0,1}λ
return k

We realize that the last library does not depend on mR or mL at all. So we can apply all
operations backward, except that we replace mL with mR to recover LΣ

ots-R ≡ LΣ
ots-L.

Léo Colisson | 7


blenderpoint
{"type": "addMe"}



Security OTP

Problem: Here, a new key k is re-sampled on every new encryption. . .Highly
impractical! We would prefer to re-use the same key:

Definition (IND-CPA)

An encryption schemeΣ = (Gen,Enc,Dec) has indistinguishable security
against chosen-plaintext attacks (IND-CPA security) if:

LΣ
cpa-L

k ← Gen(1λ)
eavesdrop(mL,mR ∈M):

return Enck(mL)

≈

LΣ
cpa-R

k ← Gen(1λ)
eavesdrop(mL,mR ∈M):

return Enck(mR)

Léo Colisson | 8


blenderpoint
{"type": "addMe"}



Security of OTP

?
Do you think that OTP is CPA secure? If yes, sketch a proof, if not, sketch an ad-
versary and compute its advantage.

A Yes
B No

Léo Colisson | 9


blenderpoint
{"type": "addMe"}



Security of OTP

?

Do you think that OTP is CPA secure? If yes, sketch a proof, if not, sketch an ad-
versary and compute its advantage.

A Yes

B No Exploit the fact that it is deterministic encryption:

Define
A

x← eavesdrop(0λ,0λ)

y← eavesdrop(0λ,1λ)
return x = y

. Then, after inlining, we have

A ⋄ LΣ
cpa-L =

A ⋄ LΣ
cpa-L

k ← Gen(1λ)
x← 0λ ⊕ k
y← 0λ ⊕ k
return x = y

i.e. Pr
[
A ⋄ LΣ

cpa-L = 1
]
= 1. But

A ⋄ LΣ
cpa-L =

A ⋄ LΣ
cpa-R

k ← Gen(1λ)
x← 0λ ⊕ k
y← 1λ ⊕ k
return x = y

i.e. Pr
[
A ⋄ LΣ

cpa-L = 1
]
= 0. Adv = 1− 0 = 1 ̸= negl(λ)

Léo Colisson | 9


blenderpoint
{"type": "addMe"}



Security of OTP

Never reuse a OTP key!!! This can
lead to real attack:

=

More: https://crypto.stackexchange.com/questions/59, https://incoherency.co.uk/blog/stories/otp-key-reuse.html

Léo Colisson | 10


blenderpoint
{"type": "addMe"}

https://crypto.stackexchange.com/questions/59
https://incoherency.co.uk/blog/stories/otp-key-reuse.html


Security of OTP

Never reuse a OTP key!!! This can
lead to real attack:

More: https://crypto.stackexchange.com/questions/59, https://incoherency.co.uk/blog/stories/otp-key-reuse.html

Léo Colisson | 10


blenderpoint
{"type": "addMe"}

https://crypto.stackexchange.com/questions/59
https://incoherency.co.uk/blog/stories/otp-key-reuse.html


Various definitions of IND-CPA

You might see this other equivalent definition of IND-CPA:

k ← Gen(1λ)
b $← {0,1} A

1n,Enck(·)

(m0,m1)

Enck(mb)

b̃

b = b̃?

vs
LΣ

cpa-L

k ← Gen(1λ)
eavesdrop(mL,mR ∈M):

return Enck(mL)

≈
LΣ

cpa-R

k ← Gen(1λ)
eavesdrop(mL,mR ∈M):

return Enck(mR)

• Instead of b, when b = 0 we play LΣ
cpa-L otherwise LΣ

cpa-R.
• in our definition, no access to oracle Enck(·), but we can simulate it by calling
eavesdrop(m,m) (same message twice).

• in our definition, no restriction on the number of allowed calls to eavesdrop (= stronger
notion, while in the other we have a single message Enck(mb)). But equivalent (advantage
is multiplied by the maximum number of queries done by A, but still negligible): proof via
a sequence of hybrids on the number of queries (cf. exercice).

Léo Colisson | 11


blenderpoint
{"type": "addMe"}



How to build IND-CPA secure schemes


blenderpoint
{"type": "addMe"}



Encryption from simpler primitives

How to build an encryption:
• Approach 1: start from scratch. Less guarantees it will be secure.
• Approach 2: try to build encryption from simpler, more tested, primitives.

But which more fundamental primitive can we use?

PRG

Pseudo-random generator

short randomness
⇒ longer randomness

PRF

Pseudo-random function

short randomness
⇒ random looking function

PRP

Pseudo-random permutation
= block-cipher

short randomness
⇒ random looking permutation

(efficiently invertible)

AES

More advanced

Léo Colisson | 13


blenderpoint
{"type": "addMe"}



Encryption from simpler primitives

How to build an encryption:
• Approach 1: start from scratch. Less guarantees it will be secure.
• Approach 2

Our approach

: try to build encryption from simpler, more tested, primitives.

But which more fundamental primitive can we use?

PRG

Pseudo-random generator

short randomness
⇒ longer randomness

PRF

Pseudo-random function

short randomness
⇒ random looking function

PRP

Pseudo-random permutation
= block-cipher

short randomness
⇒ random looking permutation

(efficiently invertible)

AES

More advanced

Léo Colisson | 13


blenderpoint
{"type": "addMe"}



Encryption from simpler primitives

How to build an encryption:
• Approach 1: start from scratch. Less guarantees it will be secure.
• Approach 2

Our approach

: try to build encryption from simpler, more tested, primitives.

But which more fundamental primitive can we use?

PRG

Pseudo-random generator

short randomness
⇒ longer randomness

PRF

Pseudo-random function

short randomness
⇒ random looking function

PRP

Pseudo-random permutation
= block-cipher

short randomness
⇒ random looking permutation

(efficiently invertible)

AES

More advanced

Léo Colisson | 13


blenderpoint
{"type": "addMe"}



Encryption from simpler primitives

How to build an encryption:
• Approach 1: start from scratch. Less guarantees it will be secure.
• Approach 2

Our approach

: try to build encryption from simpler, more tested, primitives.

But which more fundamental primitive can we use?

PRG

Pseudo-random generator

short randomness
⇒ longer randomness

PRF

Pseudo-random function

short randomness
⇒ random looking function

PRP

Pseudo-random permutation
= block-cipher

short randomness
⇒ random looking permutation

(efficiently invertible)

AES

More advanced
G(s) := fs(0)∥fs(1) . . . a PRP is a PRF

Binary tree (not used in practice) 3-round Feistel

Léo Colisson | 13


blenderpoint
{"type": "addMe"}



Motivation PRF

Léo Colisson | 14


blenderpoint
{"type": "addMe"}



Motivation PRF

Too inefficient to store!

⇒ Pseudo-random function!

Léo Colisson | 14


blenderpoint
{"type": "addMe"}



Motivation PRF

Too inefficient to store!⇒ Pseudo-random function!

Léo Colisson | 14


blenderpoint
{"type": "addMe"}



Pseudo-Random Generator (PRG)

PRG

Let G : {0,1}λ → {0,1}λ+l be a deterministic function with l > 0. We say
that G is a secure Pseudo-Random Generator (PRG) if:

LGprg-real

query():
s $← {0,1}λ
return G(s)

≈

LGprg-real

query():
r $← {0,1}λ+l
return r

Léo Colisson | 15


blenderpoint
{"type": "addMe"}



Pseudo-Random Generator (PRG)

PRG ̸= random number generator: small uniform source vs large
non-uniform noise

Léo Colisson | 16


blenderpoint
{"type": "addMe"}



Pseudo-Random Function (PRF)

PRF

Let F : {0,1}λ × {0,1}in → {0,1}out be a deterministic function. We say
that F is a secure Pseudo-Random Function (PRF) if:

LFprf-real

k $← {0,1}λ
lookup(x ∈ {0,1}in):

return F(k, x)

≈

LFprf-rand

T := empty assoc. array
lookup(x ∈ {0,1}in):

if T[x] undefined:
T[x] $← {0,1}out

return T[x]

Léo Colisson | 17


blenderpoint
{"type": "addMe"}



Pseudo-Random Permutation (PRP)

PRP

Let F : {0,1}λ × {0,1}blen → {0,1}blen be a deterministic function. We say that F is a
secure Pseudo-Random Permutation (PRP), a.k.a. block cipher, if f is invertible, i.e. if there
exists an efficient function F−1 such that ∀x, k:

F−1(k,F(k, x)) = x

and if, after defining T.values := {v | ∃x,T[x] = v}, we have:

LFprp-real

k $← {0,1}λ
lookup(x ∈ {0,1}blen):

return F(k, x)

≈

LFprp-rand

T := empty assoc. array
lookup(x ∈ {0,1}blen):

if T[x] undefined:
T[x] $← {0,1}blen \ T.values

return T[x]

Léo Colisson | 18


blenderpoint
{"type": "addMe"}



PRP vs PRF

How far are PRP from PRF?
Natural attack: call lookup(x) on random x many times (say N) until we find a
collision (lookup(x) = lookup(x′) for x′ ̸= x). If we can’t find any, claim PRP,
otherwise PRF.
Naively, think this has advantage ≈ 1

N , but much more efficient: ≈ 1√
N .

Léo Colisson | 19


blenderpoint
{"type": "addMe"}



The birthday paradox

?
Birthday paradox = What is the probability of finding two persons
with the same birthday in a class of 23 students?

A 7%
B 20%
C 50%

If N = number of elements, n = number of sample, p = proba collision:

p(n) = 1− N!

(N − n)!
1
Nn

number of sample for proba collision 1/2 ≈
√
N

Léo Colisson | 20


blenderpoint
{"type": "addMe"}



The birthday paradox

?
Birthday paradox = What is the probability of finding two persons
with the same birthday in a class of 23 students?

A 7%
B 20%
C 50%

If N = number of elements, n = number of sample, p = proba collision:

p(n) = 1− N!

(N − n)!
1
Nn

number of sample for proba collision 1/2 ≈
√
N

Léo Colisson | 20


blenderpoint
{"type": "addMe"}



The birthday paradox

Let’s try! Type your birthday (one per line, in format “DD/MM” with zeros, e.g.
02/08) at:

https://mensuel.framapad.org/p/crypto-aafw

Use echo ’...’ | sort | uniq -D to find duplicates
Léo Colisson | 21


blenderpoint
{"type": "addMe"}

https://mensuel.framapad.org/p/crypto-aafw
https://mensuel.framapad.org/p/crypto-aafw


The birthday paradox

https://oddathenaeum.com/the-birthday-paradox/

Léo Colisson | 22


blenderpoint
{"type": "addMe"}

https://oddathenaeum.com/the-birthday-paradox/


The birthday paradox

?
We said 2128 is HUGE. Is it doable to find a collision on a PRF/hash
function with output size 128 bits?

A Yes, with a laptop
B Yes, with a GPU/ASIC cluster
C No

Léo Colisson | 23


blenderpoint
{"type": "addMe"}



The birthday paradox

?
We said 2128 is HUGE. Is it doable to find a collision on a PRF/hash
function with output size 128 bits?

A Yes, with a laptop
B Yes, with a GPU/ASIC cluster

√
2128 = 2128/2 = 264.

⇒ First course, 264 doable with GPU/ASIC cluster.
C No

Léo Colisson | 23


blenderpoint
{"type": "addMe"}



The birthday paradox

But asymptotically, the birthday paradox does not cause issues:

Theorem (Asymptotic birthday paradox)

We have
Lsamp-L

samp ():
r $← {0,1}λ
return r

≈

Lsamp-R

R := ∅
samp ():
r $← {0,1}λ \ R
R = R ∪ {r}
return r

.

Proof. Bad-event lemma: A is polynomial, so Pr [bad = 1 ] = poly(λ)

Number of calls to samp

× poly(λ)
= |R|

2λ = negl(λ)

Lsamp-L

samp():
r $← {0,1}λ
return r

=

Lsamp-R

R := ∅
bad := 0
samp():
r $← {0,1}λ
if r ∈ R:

bad := 1

R = R ∪ {r}
return r

≈

Lsamp-R

R := ∅
bad := 0
samp():
r $← {0,1}λ
if r ∈ R:

bad := 1
r $← {0,1}λ \ R

R = R ∪ {r}
return r

=

Lsamp-R

R := ∅
samp():
r $← {0,1}λ \ R
R = R ∪ {r}
return r

Léo Colisson | 24


blenderpoint
{"type": "addMe"}



The birthday paradox

Take-home message

The birthday paradox does not harm asymptotic security (
√

negl(λ) = negl(λ)), but in
real life, the size of the key may need to be doubled to prevent this attack.

Léo Colisson | 25


blenderpoint
{"type": "addMe"}



A PRP is a PRF

A PRP is a PRF

Let F : {0,1}λ×{0,1}λ → {0,1}λ be a secure PRP (with blen = λ). Then F is also a secure
PRF.

Proof.

Lprf-real ≡
Identical

Lprp-real ≈

Def PRP LFprp-rand

T := empty assoc. array
lookup(x ∈ {0,1}blen):

if T[x] undefined:
T[x] $← {0,1}blen \ T.values

return T[x]

≡

LF1
T := empty assoc. array
lookup(x ∈ {0,1}blen):

if T[x] undefined:
T[x] $← samp()

return T[x]

⋄

Lsamp-R

R := ∅
samp ():
r $← {0,1}λ \ R
R = R ∪ {r}
return r

≈
2 slides above

LF1
T := empty assoc. array
lookup(x ∈ {0,1}blen):

if T[x] undefined:
T[x] $← samp()

return T[x]

⋄
Lsamp-L

samp ():
r $← {0,1}λ
return r

≡

LFprf-rand

T := empty assoc. array
lookup(x ∈ {0,1}in):

if T[x] undefined:
T[x] $← {0,1}out

return T[x]

Léo Colisson | 26


blenderpoint
{"type": "addMe"}



How to build IND-CPA schemes from
PRF or block-ciphers?


blenderpoint
{"type": "addMe"}



IND-CPA from PRF

Based on above idea, first (not so efficient) solution:

Definition (PRF pseudo-OTP)

Let F be a secure PRF. We define the PRF pseudo-OTP encryption scheme asK = {0,1}λ,

M = {0,1}out, C = {0,1}λ × {0,1}out, and:

Σprf-pseudo-OTP

Gen() :
k $← {0,1}λ
return k

Enc(k,m) :

r $← {0,1}λ
x := F(k, r)⊕m
return (r, x)

Dec(k, c) :
m := F(k, r)⊕ c
return m

Léo Colisson | 28


blenderpoint
{"type": "addMe"}



IND-CPA from PRF

Theorem (security PRF pseudo-OTP)

The PRF pseudo-OTP is IND-CPA secure.

? Exercice: try to prove its security (answer next slide)

Léo Colisson | 29


blenderpoint
{"type": "addMe"}




blenderpoint
{"type": "insertVideo","folder": "./","filename": "crypto_enc_02__subproof_prf_pseudo_otp.mp4","stops": "0, 9, 27, 51, 79, 110, 141, 164, 186, 203, 235,","nbFrames": "240","firstFrame": "","lastFrame": "","speed": ""}























Limitations PRF pseudo-OTP

Good to have secure IND-CPA scheme, but how do we encrypt an arbitrary
long message m?
• First idea: cut m in chunks of length {0,1}out, and encrypt them

separately.
⇒ Issue: remember, Enc is a tupple (r, x), i.e. for l chunks, overhead of λl

Too inefficient!

• Solution: use block cipher modes!

Léo Colisson | 30


blenderpoint
{"type": "addMe"}



Limitations PRF pseudo-OTP

Good to have secure IND-CPA scheme, but how do we encrypt an arbitrary
long message m?
• First idea: cut m in chunks of length {0,1}out, and encrypt them

separately.
⇒ Issue: remember, Enc is a tupple (r, x), i.e. for l chunks, overhead of λl

Too inefficient!
• Solution: use block cipher modes!

Léo Colisson | 30


blenderpoint
{"type": "addMe"}



Block cipher modes

Multiple modes of operation (= variants):

Block cipher (PRP) Encryption scheme
Enc: {0,1}κ

Key

× {0,1}∗

Message

→ {0,1}∗
Block cipher mode

Léo Colisson | 31


blenderpoint
{"type": "addMe"}



Common modes

Definition (ECB mode: NEVER USE THIS)

The (INSECURE!) Electronic Codebook (ECB) mode is defined as:

? This mode is said to be worse than deterministic. Find an attack that make a
single call to the encryption function.

Léo Colisson | 32


blenderpoint
{"type": "addMe"}



Common modes

Definition (CBC mode)

The Cipher Block Chaining (CBC) mode is
defined as:

?
c0 is called the initialization vec-
tor (IV). Why can’t we set it to a
fixed value?

A It acts like a OTP on the
message, hence hides it

B Used to have a
non-deterministic
encryption

Léo Colisson | 33


blenderpoint
{"type": "addMe"}



Common modes

Definition (CBC mode)

The Cipher Block Chaining (CBC) mode is
defined as:

?
c0 is called the initialization vec-
tor (IV). Why can’t we set it to a
fixed value?

A It acts like a OTP on the
message, hence hides it

IV is public, so cannot
be a OTP key!

B Used to have a
non-deterministic
encryption

Léo Colisson | 33


blenderpoint
{"type": "addMe"}



Common modes

Definition (CTR mode)

The counter (CTR) mode is defined as:

?
Try to find the decryption algo-
rithm. Do you need to compute
F−1?

A Yes
B No

Léo Colisson | 34


blenderpoint
{"type": "addMe"}



Common modes

Definition (CTR mode)

The counter (CTR) mode is defined as:

?
Try to find the decryption algo-
rithm. Do you need to compute
F−1?

A Yes

B No No need to have a
PRP, PRF is enough (but in
practice, most efficient PRF
are PRP anyway)

Léo Colisson | 34


blenderpoint
{"type": "addMe"}



Common modes

Definition (OFB mode)

The output feedback (OFB) mode is de-
fined as: ?

Try to find the decryption algo-
rithm. Do you need to compute
F−1?

A Yes
B No

Léo Colisson | 35


blenderpoint
{"type": "addMe"}



Common modes

Definition (OFB mode)

The output feedback (OFB) mode is de-
fined as: ?

Try to find the decryption algo-
rithm. Do you need to compute
F−1?

A Yes

B No No need to have a
PRP, PRF is enough

Léo Colisson | 35


blenderpoint
{"type": "addMe"}



Comparison of modes

ECB CBC CTR OFB
IND-CPA !!!
Parallelizable
Pre-computable
Can avoid padding
Safer with no permutation cycle
Slightly safer against IV re-use
(e.g. in bad implementation)

Winner is CTR mode! (but wait encrypt & authenticate modes like GCM)

Léo Colisson | 36


blenderpoint
{"type": "addMe"}



Comparison of modes

?
A friend proposes to encode your hard drive with AES in OFB mode.
Is this a good idea? Why?

A Yes
B No

Léo Colisson | 37


blenderpoint
{"type": "addMe"}



Comparison of modes

?
A friend proposes to encode your hard drive with AES in OFB mode.
Is this a good idea? Why?

A Yes
B No Bad idea, because OFB is not parallelizable. Hence to

decrypt the last byte of the drive, we need to decrypt the
whole drive!

Léo Colisson | 37


blenderpoint
{"type": "addMe"}



Modes vulnerable to birthday attacks

All modes are vulnerable to birthday attacks (cf TD), so make sure you encrypt
less than 2blen/2 blocks (i.e. keep blen large, e.g. don’t use 3DES! (64 bits)).
Today: most widely used cipher is

Advanced Encryption Standard (AES)

with 128 bits block length (key length: 128, 192 or 256 bits). See also:
• Rijndael (generalization AES): block length 128, 192, or 256,
• Serpent (2nd finalist in Advanced Encryption Standard process)
• Twofish (blen = 128) and blowfish (warning: blen = 64!)
• never use DES = broken (previous standard), temporarily replaced by

3DES

Léo Colisson | 38


blenderpoint
{"type": "addMe"}



IND-CPA for variable-length plaintexts

?

Can you find a generic IND-CPA attack against these cipher modes of operation
(e.g. CTR, assume blen = λ for simplicity)?

A No

B Yes, with

A
c := eavesdrop(0λ,0λ)

d := eavesdrop(0λ,1λ)

return c ?
= d

C Yes, with
A

c := eavesdrop(0λ,02λ)
return |c| ?

= 2λ

Léo Colisson | 39


blenderpoint
{"type": "addMe"}



IND-CPA for variable-length plaintexts

?

Can you find a generic IND-CPA attack against these cipher modes of operation
(e.g. CTR, assume blen = λ for simplicity)?

A No

B Yes, with

A
c := eavesdrop(0λ,0λ)

d := eavesdrop(0λ,1λ)

return c ?
= d

C Yes, with
A

c := eavesdrop(0λ,02λ)
return |c| ?

= 2λ
The length of the ciphertext equals

λ+ |m| ⇒ leaks the length of the message!

Léo Colisson | 39


blenderpoint
{"type": "addMe"}



IND-CPA for variable-length plaintexts

IND-CPA for variable-length plaintexts

When messages can have various length, we need to update the defini-
tion of security:

LΣ
cpa-L

k ← Gen(1λ)
eavesdrop(mL,mR ∈M):

if |mL| ≠ |mR| return err
return Enck(mL)

≈

LΣ
cpa-R

k ← Gen(1λ)
eavesdrop(mL,mR ∈M):

if |mL| ≠ |mR| return err
return Enck(mR)

Léo Colisson | 40


blenderpoint
{"type": "addMe"}



IND-CPA for variable-length plaintexts

Is leaking the length an issue?

Sometimes! E.g.
• Google maps sends tiles, each tile having a different size (despite same

pixel size) due to compression⇒ possible to know what tile is displayed
only by looking at traffic
• Variable-bit-rate (VBR) in video shows different (chunk of) “frame” size

depending on the time. Possible to know which movie you watch on
netflix/youtube based on this, and even identity speaker/language/word
spoken in voice chat programs!

Léo Colisson | 41


blenderpoint
{"type": "addMe"}



Padding


blenderpoint
{"type": "addMe"}



Padding

What if |m| is not a multiple of the block length?
• CTR mode: simple, just truncate the ciphertext (like regular OTP)
• CBC mode: need to add padding (add data until reaching block length)

(also possible to do “ciphertext stealing” in this specific case)

Léo Colisson | 43


blenderpoint
{"type": "addMe"}



Padding

Many ways to pad m into m′:
• add zeros: not working! When decrypting, how do you how many zeros to

remove?
• ANSI X.923 standard: add 0’s until the last byte that contains the number

of padded bytes
• PKCS#7 standard: if b bytes of padding needed, add the actual b byte b

times
• ISO/IEC 7816-4 standard: append 10 . . .0

The actual choice has little importance, not really a security feature (at least
when considering passive adversaries, see later)

Léo Colisson | 44


blenderpoint
{"type": "addMe"}



Padding

?
Consider ISO/IEC 7816-4 standard (append 10 . . .0): if you pad a
message m of size kblen into m′, what is the size of m′?

A kblen
B kblen + 1
C (k + 1)blen

Léo Colisson | 45


blenderpoint
{"type": "addMe"}



Padding

?
Consider ISO/IEC 7816-4 standard (append 10 . . .0): if you pad a
message m of size kblen into m′, what is the size of m′?

A kblen
B kblen + 1
C (k + 1)blen (like all paddings, it increases the size of the

message)

Léo Colisson | 45


blenderpoint
{"type": "addMe"}



Padding oracle attack & CCA security


blenderpoint
{"type": "addMe"}



Padding oracle attack

Before: passive adversary (somewhat unrealistic). Now, we consider active
adversaries:

Alice Eve Bob

What happens if Bob returns an error if the padding is incorrect?
⇒ Eve can completely recover the encrypted message!

Léo Colisson | 47


blenderpoint
{"type": "addMe"}



Padding oracle attack (illustrate on board)

Attack model: CTR mode, padding ANSI X.923, A has access to

k ← Gen(1λ)
paddingoracle(c):
m := Dec(k, c)
return validpad(m)

.

(hence validpad(m) checks if m ends with a byte b containing before b− 1 bytes filled with 0’s).
Say that we have access to c0 ← Enck(m0) (where m0 is already padded), goal is to find m0.
• step 0: realize that in CTR mode, Enck(m)⊕ (0blen, x) = Enck(m⊕ x). So we can change the

message from the ciphertext (hence later I’ll say “apply an operation on m” even if in fact
we apply it on Enck(m)).

• first step: determine length of the message (changing any bit of the message does NOT
trigger an error, changing a bit of the padding does)

• second step: once you know the length of the padding p, you know that m0 looks like
munpad08pByte(p). Xor to the last byte of c0 the byte Byte(p)⊕ Byte(p+1). Thanks to step 0
you now have an encryption of munpad08pByte(p+1). Since munpad does not (a-priori) ends
with a zero-byte, paddingoracle will return an error. Now we iterate over x ∈ {0, . . . , 255}
by xoring the last bit of (the encryption of) munpad with x, and calling paddingoracle on it.
At some points, it will not error: the last bit of munpad is equal to x!

• last step: we start again from second step until we find all bits of m.
Léo Colisson | 48


blenderpoint
{"type": "addMe"}



Limitation of IND-CPA security

Fundamental issue: not padding, but server behaves differently based on
the decrypted value.

In practice, this is extremely common and hard to avoid (e.g. it takes maybe
a bit longer to decrypt some messages, or does different operations based on
the decrypted value. . . )

⇒We need a more resilient security definition: allow attacker to decrypt
arbitrary messages = IND-CCA!

Léo Colisson | 49


blenderpoint
{"type": "addMe"}



IND-CCA

IND-CCA

Let Σ be an encryption scheme. We say that Σ has indistinguishable se-
curity against chosen-ciphertext attacks (IND-CCA) if:

LΣ
cpa-L

k ← Gen(1λ)
S := ∅
eavesdrop(mL,mR ∈M):

if |mL| ≠ |mR| return err
c := Enck(mL)
S := S ∪ {c}
return c

decrypt(c ∈ C):
if c ∈ S return err
return Dec(k, c)

≈

LΣ
cpa-R

k ← Gen(1λ)
S := ∅
eavesdrop(mL,mR ∈M):

if |mL| ≠ |mR| return err
c := Enck(mR)
S := S ∪ {c}
return c

decrypt(c ∈ C):
if c ∈ S return err
return Dec(k, c)

Léo Colisson | 50


blenderpoint
{"type": "addMe"}



Malleability

?
Can you find a CCA attack against, e.g., CTR
mode?

A No

B Yes, with
A

(c0, c1)← eavesdrop(0blen,1blen)
m← decrypt((c0, c1 ⊕ (10 . . .0)))
return m ?

= 10 . . .0

C Yes, with

A
(c0, c1)← eavesdrop(0blen,1blen)
m← decrypt((c0, c1))
return m = 0blen

Léo Colisson | 51


blenderpoint
{"type": "addMe"}



Malleability

?

Can you find a CCA attack against, e.g., CTR
mode?

A No

B Yes, with
A

(c0, c1)← eavesdrop(0blen,1blen)
m← decrypt((c0, c1 ⊕ (10 . . .0)))
return m ?

= 10 . . .0

C Yes, with

A
(c0, c1)← eavesdrop(0blen,1blen)
m← decrypt((c0, c1))
return m = 0blen

Léo Colisson | 51


blenderpoint
{"type": "addMe"}



Malleability

Fundamental reason: CTR is malleable, i.e. we can obtain
Enck(x′) = (c0, x′ ⊕ Fk(c0)) from Enck(x) = (c0, x⊕ Fk(c0)) (just add x⊕ x′ to the
second element of the tuple).

Problem in real life: e.g. we can turn a “Yes” into a “No”.

How to prevent this? Authentication! (later course)

Léo Colisson | 52


blenderpoint
{"type": "addMe"}



Conclusion

• OTP is statistically secure if used once
• A first notion of security against passive adversary is IND-CPA
• PRF⇒ IND-CPA secure schemes
• Birthday paradox = may need to double the size of key
• Block-cipher modes = encrypt efficiently arbitrarily long messages

(padding sometimes necessary)
• CTR mode has good properties (but wait GCM)
• AES = common PRP (hence PRF) used in block-cipher modes
• Malleable encryption⇒ attacks against active adversaries (e.g. padding

oracle/timing attacks)
• Authentication will help us!

Léo Colisson | 53


blenderpoint
{"type": "addMe"}


