Crypto Engineering 2024 Symmetric cryptography

Léo Colisson Palais

leo.colisson-palais@univ-grenoble-alpes.fr
https://leo.colisson.me/teaching.html

Reminder symmetric encryption & IND-CPA security

С

 \mathbf{m}

 \mathbf{m}

m

Symmetric encryption

Definition (Symmetric encryption scheme)

Let \mathcal{K} , \mathcal{M} , \mathcal{C} be the set of, respectively, keys, messages and ciphertexts. An encryption scheme is a tuple (Gen, Enc, Dec) of polynomial algorithm:

Security parameter $\lambda \in \mathbb{N}$ in unary form: Gen runs in poly time in the size of its input

• Key-generation ${m k} \leftarrow {\sf Gen}({f 1}^\lambda)$

 $\overbrace{\mathsf{Key } k \in \mathcal{K}}$

- Encryption $c \leftarrow \text{Enc}_k(m)$ (Message $m \in M$, sometimes written Enc(k, m)).
- Decryption $m \leftarrow \text{Dec}_k(c)$ Ciphertext $c \in C$

that must be correct, i.e. such that for any $m \in \mathcal{M}$:

$$\Pr_{\mathsf{K} \leftarrow \mathcal{K}} \left[\mathsf{Dec}_k(\mathsf{Enc}_k(m)) = m \right] = 1$$

One-Time Pad

Definition (One-Time Pad, OTP)

The One-Time Pad is the crypto-system defined as $\mathcal{M} = \mathcal{K} = \mathcal{K} = \{0,1\}^{\lambda}$ and (Gen, Enc, Dec) as:

Correctness: $\forall k$, Dec(k, Enc(k, m)) = $k \oplus k \oplus m = m$.

Last episode: hard to find a good notion of security, but it seems like the adversary should choose two messages m_0 and m_1 , and tell if they obtained $\text{Enc}_k(m_0)$ or $\text{Enc}_k(m_1)$. Still an important question:

What do we give to the adversary before they get to choose m_0 and m_1 ?

First (weak) security definition:

- We give NOTHING
- We change the key at any new encryption

More formally:

Definition (One-time secrecy)

An encryption scheme $\Sigma = (\text{Gen}, \text{Enc}, \text{Dec})$ with key-space \mathcal{K} , message-space \mathcal{M} and cipher-text space \mathcal{C} is *one-time secure* if:

$$\frac{\mathcal{L}_{\mathsf{ots-L}}^{\Sigma}}{\substack{\mathsf{EAVESDROP}(m_L, m_R \in \mathcal{M}):\\ k \leftarrow \mathsf{Gen}(1^{\lambda})\\ \mathsf{return} \, \mathsf{Enc}_k(m_L)}} \equiv \frac{\mathcal{L}_{\mathsf{ots-R}}^{\Sigma}}{\substack{\mathsf{EAVESDROP}(m_L, m_R \in \mathcal{M}):\\ k \leftarrow \mathsf{Gen}(1^{\lambda})\\ \mathsf{return} \, \mathsf{Enc}_k(m_R)}}$$

Léo Colisson | 6

Theorem OTP is one-time secure Proof Def. OTP Externalize code $\mathcal{L}_{ots-l}^{\Sigma}$ EAVESDROP $(m_L, m_R \in \mathcal{M})$: OTENC(m): EAVESDROP $(m_L, m_R \in \mathcal{M})$: ≛ 1 EAVESDROP $(m_L, m_R \in \mathcal{M})$: $k \stackrel{\hspace{0.1em} \leftarrow}{\leftarrow} \{ 0, 1 \}^{\lambda}$ \diamond $k \stackrel{\hspace{0.1em} \leftarrow \hspace{0.1em} {\color{red} {\$}}}{\leftarrow} \{ {\color{black} 0}, 1 \}^{\lambda}$ return OTENC (m_T) $k \leftarrow \text{Gen}(1^{\lambda})$ return $k \oplus m_L$ return $k \oplus m$ return $Enc_k(m_L)$ OTENC(m): EAVESDROP $(m_L, m_R \in \mathcal{M})$: EAVESDROP $(m_L, m_R \in \mathcal{M})$: ≣ 0 $k \notin \{0, 1\}^{\lambda}$ ≣ $k \stackrel{\hspace{0.1em} \leftarrow \hspace{0.1em} \$}{\leftarrow} \{ 0, 1 \}^{\lambda}$ return OTENC (m_t) return k return k Thm OTP uniform ciphertext from first lecture Inline subroutine We realize that the last library does not depend on m_R or m_L at all. So we can apply all

operations backward, except that we replace m_L with m_R to recover $\mathcal{L}_{\text{ots-R}}^{\Sigma} \equiv \mathcal{L}_{\text{ots-L}}^{\Sigma}$.

Security OTP

Problem: Here, a **new key** *k* is re-sampled on every new encryption...**Highly impractical**! We would prefer to **re-use** the same key:

Definition (IND-CPA)

An encryption scheme $\Sigma = (Gen, Enc, Dec)$ has indistinguishable security against *chosen-plaintext attacks* (IND-CPA security) if:

$$\begin{array}{|c|c|} \mathcal{L}_{\mathsf{cpa-L}}^{\Sigma} & \mathcal{L}_{\mathsf{cpa-R}}^{\Sigma} \\ \hline k \leftarrow \mathsf{Gen}(1^{\lambda}) \\ \underline{\mathsf{EAVESDROP}}(m_L, m_R \in \mathcal{M}) \\ \hline \mathsf{return} \ \mathsf{Enc}_k(m_L) \end{array} \approx \begin{array}{|c|} \mathcal{L}_{\mathsf{cpa-R}}^{\Sigma} \\ \hline k \leftarrow \mathsf{Gen}(1^{\lambda}) \\ \underline{\mathsf{EAVESDROP}}(m_L, m_R \in \mathcal{M}) \\ \hline \mathsf{return} \ \mathsf{Enc}_k(m_R) \end{array}$$

Do vou think that OTP is CPA secure? If yes, sketch a proof, if not, sketch an adversary and compute its advantage. 🖪 Yes 💥 **B** No **Second Exploit** the fact that it is **deterministic encryption**: Define $\begin{vmatrix} x \leftarrow EAVESDROP(0^{\lambda}, 0^{\lambda}) \\ y \leftarrow EAVESDROP(0^{\lambda}, 1^{\lambda}) \end{vmatrix}$. Then, after inlining, we have return x = v $\mathcal{A} \diamond \mathcal{L}_{\mathsf{cpa-L}}^{\Sigma}$ $\mathcal{A} \diamond \mathcal{L}_{\mathsf{cpa-L}}^{\Sigma} = \begin{vmatrix} k \leftarrow \mathsf{Gen}(1^{\lambda}) \\ x \leftarrow \emptyset^{\lambda} \oplus k \\ y \leftarrow \emptyset^{\lambda} \oplus k \end{vmatrix} \text{ i.e. } \Pr\left[\mathcal{A} \diamond \mathcal{L}_{\mathsf{cpa-L}}^{\Sigma} = 1 \right] = 1. \text{ But}$ return x = v $\mathcal{A} \diamond \mathcal{L}_{cpa-R}^{\Sigma}$ $\mathcal{A} \diamond \mathcal{L}_{cpa-L}^{\Sigma} = \begin{bmatrix} k \leftarrow \text{Gen}(1^{\lambda}) \\ x \leftarrow 0^{\lambda} \oplus k \\ y \leftarrow 1^{\lambda} \oplus k \\ return \ x = y \end{bmatrix} \text{ i.e. } \Pr\left[\mathcal{A} \diamond \mathcal{L}_{cpa-L}^{\Sigma} = 1\right] = 0. \text{ Adv} = 1 - 0 = 1 \neq \text{negl}(\lambda)$

Never reuse a OTP key!!! This can

lead to real attack:

More: https://crypto.stackexchange.com/questions/59, https://incoherency.co.uk/blog/stories/otp-key-reuse.html

Léo Colisson | 10

Never reuse a OTP key!!! This can lead to real attack:

More: https://crypto.stackexchange.com/questions/59, https://incoherency.co.uk/blog/stories/otp-key-reuse.html

Various definitions of IND-CPA

You might see this other **equivalent** definition of IND-CPA:

- Instead of *b*, when b = 0 we play $\mathcal{L}^{\Sigma}_{\text{cpa-L}}$ otherwise $\mathcal{L}^{\Sigma}_{\text{cpa-R}}$.
- in our definition, no access to oracle $Enc_k(\cdot)$, but we can **simulate it** by calling EAVESDROP(m, m) (same message twice).
- in our definition, no restriction on the number of allowed calls to EAVESDROP (= stronger notion, while in the other we have a single message $Enc_k(m_b)$). But equivalent (advantage is multiplied by the maximum number of queries done by A, but still negligible): proof via a sequence of **hybrids on the number of queries** (cf. exercice).

How to build IND-CPA secure schemes

How to build an encryption:

- Approach 1: start from scratch. Less guarantees it will be secure.
- Approach 2: try to build encryption from simpler, more tested, primitives.

How to build an encryption:

- Approach 1: start from scratch. Less guarantees it will be secure.
- Approach 2: try to build encryption from simpler, more tested, primitives.

Our approach

How to build an encryption:

- Approach 1: start from scratch. Less guarantees it will be secure.
- Approach 2: try to build encryption from simpler, more tested, primitives.

Our approach

But which more fundamental primitive can we use?

How to build an encryption:

- Approach 1: start from scratch. Less guarantees it will be secure.
- Approach 2: try to build encryption from simpler, more tested, primitives.

Our approach

But which more fundamental primitive can we use?

Motivation PRF

Motivation PRF

Léo Colisson | 14

Motivation PRF

Léo Colisson | 14

Pseudo-Random Generator (PRG)

PRG

Let $G: \{0, 1\}^{\lambda} \to \{0, 1\}^{\lambda+l}$ be a deterministic function with l > 0. We say that G is a secure Pseudo-Random Generator (PRG) if:

Pseudo-Random Generator (PRG)

PRG \neq **random number generator**: small uniform source vs large non-uniform noise

Pseudo-Random Function (PRF)

PRF

Let $F: \{0, 1\}^{\lambda} \times \{0, 1\}^{\text{in}} \to \{0, 1\}^{\text{out}}$ be a deterministic function. We say that F is a secure Pseudo-Random Function (PRF) if:

Pseudo-Random Permutation (PRP)

PRP

Let $F: \{0, 1\}^{\lambda} \times \{0, 1\}^{\text{blen}} \to \{0, 1\}^{\text{blen}}$ be a deterministic function. We say that F is a *secure Pseudo-Random Permutation (PRP)*, a.k.a. *block cipher*, if f is invertible, i.e. if there exists an efficient function F^{-1} such that $\forall x, k$:

$$F^{-1}(k,F(k,x)) = x$$

and if, after defining *T*.values $:= \{v \mid \exists x, T[x] = v\}$, we have:

$$\begin{array}{|c|c|c|} \mathcal{L}^{F}_{\mathsf{prp-real}} \\ \hline \mathcal{L}^{\delta}_{\mathsf{prp-real}} \\ \underline{\mathsf{LOKUP}(x \in \{\emptyset, 1\}^{\lambda})}_{\mathsf{return} F(k, x)} \approx & \begin{array}{c} \mathcal{L}^{F}_{\mathsf{prp-rand}} \\ T \coloneqq \mathsf{empty} \mathsf{assoc.} \mathsf{array} \\ \underline{\mathsf{LOKUP}(x \in \{\emptyset, 1\}^{\mathsf{blen}}):} \\ \hline \mathsf{IOKUP}(x \in \{\emptyset, 1\}^{\mathsf{blen}}): \\ \hline \mathsf{if} \ T[x] \ \mathsf{undefined}: \\ T[x] \notin \{\emptyset, 1\}^{\mathsf{blen}} \setminus T. \mathsf{values} \\ \mathsf{return} \ T[x] \end{array}$$

PRP vs PRF

How far are PRP from PRF?

Natural attack: call LOOKUP(x) on random x many times (say N) until we find a collision (LOOKUP(x) = LOOKUP(x') for $x' \neq x$). If we can't find any, claim PRP, otherwise PRF.

Naively, think this has advantage $\approx \frac{1}{N}$, but much more efficient: $\approx \frac{1}{\sqrt{N}}$.

The birthday paradox

The birthday paradox

If N = number of elements, n = number of sample, p = proba collision:

$$p(n) = 1 - \frac{N!}{(N-n)!} \frac{1}{N^n}$$

number of sample for proba collision $1/2 \approx \sqrt{N}$

The birthday paradox

Let's try! Type your birthday (one per line, in format "DD/MM" with zeros, e.g. 02/08) at:

Use echo '...' | sort | uniq -D to find duplicates

Léo Colisson | 21

https://oddathenaeum.com/the-birthday-paradox/

- A Yes, with a laptop
- **B** Yes, with a GPU/ASIC cluster $\sqrt{\sqrt{2^{128}}} = 2^{128/2} = 2^{64}$. \Rightarrow First course, 2⁶⁴ doable with GPU/ASIC cluster.

O No

But asymptotically, the birthday paradox does not cause issues:

Proof. Bad-event lemma: \mathcal{A} is polynomial, so $\Pr[\mathsf{bad} = 1] = \mathsf{poly}(\lambda) \times \frac{\mathsf{poly}(\lambda)}{2^{\lambda}} = \mathsf{negl}(\lambda)$

Take-home message

The birthday paradox does not harm asymptotic security ($\sqrt{\text{negl}(\lambda)} = \text{negl}(\lambda)$), but in real life, the **size of the key may need to be doubled** to prevent this attack.

A PRP is a PRF

A PRP is a PRF

Let $F: \{0, 1\}^{\lambda} \times \{0, 1\}^{\lambda} \to \{0, 1\}^{\lambda}$ be a secure PRP (with blen = λ). Then F is also a secure PRF.

Proof.

Léo Colisson | 26

How to build IND-CPA schemes from PRF or block-ciphers?

IND-CPA from PRF

Based on above idea, first (not so efficient) solution:

IND-CPA from PRF

Theorem (security PRF pseudo-OTP)

The PRF pseudo-OTP is IND-CPA secure.

2 Exercice: try to prove its security (answer next slide)

Léo Colisson | 29

Asymptotic birthday paradox

$$T := \text{ empty assoc. array} \\ EAVESDROP(m_L, m_R \in \mathcal{M}): \\ r \notin SAMP() \\ \text{if } T[r] \text{ undefined:} \\ T[r] \notin \{0, 1\}^{\text{out}} \\ x := T[r] \oplus m_L \\ \text{return } (r, x) \\ \\ Inline \\ \blacksquare \\ Inline \\ Inline \\ \blacksquare \\ Inline \\ \blacksquare \\ Inline \\ Inline \\ Inline \\ \blacksquare \\ Inline \\$$

. .

Since this last library is symmetric with respect to m_L and m_R , we can do exactly the same computations starting from $\mathcal{L}_{\text{cpa-R}}^{\Sigma}$ and we will find the exact same library (or, equivalently, do the operations backward with m_R instead of m_L), hence $\mathcal{L}_{\text{cpa-R}}^{\Sigma} \approx \mathcal{L}_{\text{cpa-L}}^{\Sigma}$.

Limitations PRF pseudo-OTP

Good to have secure IND-CPA scheme, but **how do we encrypt an arbitrary long message** *m*?

• First idea: **cut** *m* **in chunks** of length {0, 1}^{out}, and encrypt them separately.

 \Rightarrow Issue: remember, Enc is a tupple (r, x), i.e. for l chunks, overhead of λl

Too inefficient! 😫

Limitations PRF pseudo-OTP

Good to have secure IND-CPA scheme, but **how do we encrypt an arbitrary long message** *m*?

• First idea: **cut** *m* **in chunks** of length {0, 1}^{out}, and encrypt them separately.

 \Rightarrow Issue: remember, Enc is a tupple (r, x), i.e. for *l* chunks, overhead of λl

Too inefficient! 😰

• Solution: use **block cipher modes**!

Block cipher modes

Multiple modes of operation (= variants):

Definition (ECB mode: NEVER USE THIS) The (INSECURE!) Electronic Codebook (ECB) mode is defined as: m_2 ma $\operatorname{Enc}(k, m_1 \| \cdots \| m_\ell)$: for i = 1 to ℓ : F_k F_k $c_i := F(k, m_i)$ return $c_1 \| \cdots \| c_\ell$ Co. $\operatorname{Dec}(k, c_1 \| \cdots \| c_\ell)$ for i = 1 to ℓ : F_{μ}^{-1} F_{ν}^{-1} F_{ν}^{-1} $m_i := F^{-1}(k, c_i)$ return $m_1 \| \cdots \| m_\ell$ m_{1} m_{2} m_2

This mode is said to be worse than deterministic. Find an attack that make a single call to the encryption function.

Definition (CBC mode)

The Cipher Block Chaining (CBC) mode is defined as:

 c_0 is called the initialization vector (IV). Why can't we set it to a fixed value?

- It acts like a OTP on the message, hence hides it
- B Used to have a non-deterministic encryption

Definition (CBC mode)

The Cipher Block Chaining (CBC) mode is defined as:

 c_0 is called the initialization vector (IV). Why can't we set it to a fixed value?

- It acts like a OTP on the message, hence hides it
 IV is public, so cannot be a OTP key!
- B Used to have a non-deterministic encryption √

Try to find the decryption algorithm. Do you need to compute F^{-1} ?

- \Lambda Yes 💢
- B No ✓ No need to have a PRP, PRF is enough (but in practice, most efficient PRF are PRP anyway)

Definition (OFB mode)

The output feedback (OFB) mode is defined as:

Try to find the decryption algorithm. Do you need to compute F^{-1} ?

Definition (OFB mode)

The output feedback (OFB) mode is defined as:

Try to find the decryption algorithm. Do you need to compute *F*⁻¹?
▲ Yes
▲ Yes
▲ No
▲ No
▲ No
▲ No
▲ No
▲ PRP, PRF is enough

Comparison of modes

IND-CPA

Parallelizable

Pre-computable

Can avoid padding

Safer with no permutation cycle

Slightly safer against IV re-use (e.g. in bad implementation)

Winner is CTR mode! (but wait encrypt & authenticate modes like GCM)

Comparison of modes

Comparison of modes

All modes are vulnerable to birthday attacks (cf TD), so make sure you encrypt less than 2^{blen/2} blocks (i.e. keep blen large, e.g. don't use 3DES! (64 bits)).

Today: most widely used cipher is

Advanced Encryption Standard (AES)

with 128 bits block length (key length: 128, 192 or 256 bits). See also:

- Rijndael (generalization AES): block length 128, 192, or 256,
- Serpent (2nd finalist in Advanced Encryption Standard process)
- Twofish (blen = 128) and blowfish (warning: blen = 64!)
- never use DES = broken (previous standard), temporarily replaced by 3DES

IND-CPA for variable-length plaintexts

IND-CPA for variable-length plaintexts

Can you find a generic IND-CPA attack against these cipher modes of operation (e.g. CTR, assume blen = λ for simplicity)? 🖪 No 💥 \mathcal{A} B Yes, with $\begin{vmatrix} c \coloneqq EAVESDROP(0^{\lambda}, 0^{\lambda}) \\ d \coloneqq EAVESDROP(0^{\lambda}, 1^{\lambda}) \end{vmatrix}$ return $c \stackrel{?}{=} d$ A **(** Yes, with $c := \text{EAVESDROP}(\mathbf{0}^{\lambda}, \mathbf{0}^{2\lambda})$ **(** The length of the ciphertext equals return $|c| \stackrel{?}{=} 2\lambda$ $\lambda + |m| \Rightarrow$ leaks the length of the message!
IND-CPA for variable-length plaintexts

IND-CPA for variable-length plaintexts

When messages can have various length, we need to update the definition of security:

Is leaking the length an issue?

Sometimes! E.g.

- Google maps sends tiles, each tile having a different size (despite same pixel size) due to compression ⇒ possible to know what tile is displayed only by looking at traffic
- Variable-bit-rate (VBR) in video shows different (chunk of) "frame" size depending on the time. Possible to know which movie you watch on netflix/youtube based on this, and even identity speaker/language/word spoken in voice chat programs!

What if |m| is not a multiple of the block length?

- CTR mode: simple, just truncate the ciphertext (like regular OTP)
- CBC mode: need to add **padding** (add data until reaching block length) (also possible to do "ciphertext stealing" in this specific case)

Many ways to pad m into m':

- add zeros: not working! When decrypting, how do you how many zeros to remove?
- ANSI X.923 standard: add 0's until the last byte that contains the number of padded bytes
- PKCS#7 standard: if *b* bytes of padding needed, add the actual *b* byte *b* times
- ISO/IEC 7816-4 standard: append 10...0

The actual choice has **little importance**, not really a security feature (at least when considering passive adversaries, see later)

Padding oracle attack & CCA security

Padding oracle attack

Before: passive adversary (somewhat unrealistic). Now, we consider active adversaries:

What happens if Bob returns an error if the padding is incorrect? \Rightarrow Eve can completely recover the encrypted message!

Padding oracle attack (illustrate on board)

Attack model: CTR mode, padding ANSI X.923, $\mathcal A$ has access to

 $k \leftarrow \text{Gen}(1^{\lambda})$ $\underbrace{ \begin{array}{l} \mathsf{PADDINGORACLE}(c): \\ \hline m \coloneqq \mathsf{Dec}(k,c) \\ \mathsf{return VALIDPAD}(m) \end{array} }_{ \end{tabular}$

(hence VALIDPAD(m) checks if m ends with a byte b containing before b - 1 bytes filled with 0's). Say that we have access to $c_0 \leftarrow \text{Enc}_k(m_0)$ (where m_0 is already padded), goal is to find m_0 .

- step 0: realize that in CTR mode, $Enc_k(m) \oplus (0^{blen}, x) = Enc_k(m \oplus x)$. So we can change the message from the ciphertext (hence later I'll say "apply an operation on m" even if in fact we apply it on $Enc_k(m)$).
- first step: determine length of the message (changing any bit of the message does NOT trigger an error, changing a bit of the padding does)
- second step: once you know the length of the padding p, you know that m_0 looks like $m_{unpad} O^{8p}$ Byte(p). Xor to the last byte of c_0 the byte Byte(p) \oplus Byte(p+1). Thanks to step 0 you now have an encryption of $m_{unpad} O^{8p}$ Byte(p+1). Since m_{unpad} does not (a-priori) ends with a zero-byte, PADDINGORACLE will return an error. Now we iterate over $x \in \{0, \dots, 255\}$ by xoring the last bit of (the encryption of) m_{unpad} with x, and calling PADDINGORACLE on it. At some points, it will not error: the last bit of m_{unpad} is equal to x!
- last step: we start again from second step until we find all bits of *m*.

Fundamental issue: not padding, but server behaves **differently based on the decrypted value**.

In practice, this is **extremely common** and hard to avoid (e.g. it takes maybe a bit longer to decrypt some messages, or does different operations based on the decrypted value...)

⇒ We need a more resilient security definition: allow attacker to decrypt arbitrary messages = IND-CCA!

IND-CCA

IND-CCA

Let Σ be an encryption scheme. We say that Σ has indistinguishable security against **chosen-ciphertext attacks (IND-CCA)** if:

$\mathcal{L}^{\Sigma}_{cpa-L}$		$\mathcal{L}^{\Sigma}_{cpa-R}$
$k \leftarrow Gen(1^\lambda)$		$k \leftarrow Gen(1^\lambda)$
$\mathcal{S}\coloneqq \emptyset$		$\mathcal{S}\coloneqq \emptyset$
EAVESDROP $(m_L,m_R\in\mathcal{M})$:		Eavesdrop $(m_L,m_R\in\mathcal{M})$:
if $ m_L \neq m_R $ return err		if $ m_L eq m_R $ return err
$c\coloneqq Enc_k(m_L)$	\approx	$c\coloneqq Enc_k(m_R)$
$\mathcal{S}\coloneqq\mathcal{S}\cup\{c\}$		$\mathcal{S}\coloneqq\mathcal{S}\cup\{c\}$
return <i>c</i>		return <i>c</i>
$DECRYPT(\boldsymbol{c}\in\mathcal{C})$:		$DECRYPT(\boldsymbol{c}\in\mathcal{C})$:
if $c \in S$ return err		if $c \in \mathcal{S}$ return err
return $Dec(k,c)$		return $Dec(k,c)$

Malleability

Malleability

Malleability

Fundamental reason: CTR is **malleable**, i.e. we can obtain $Enc_k(x') = (c_0, x' \oplus F_k(c_0))$ from $Enc_k(x) = (c_0, x \oplus F_k(c_0))$ (just add $x \oplus x'$ to the second element of the tuple).

Problem in real life: e.g. we can turn a "Yes" into a "No".

How to prevent this? Authentication! (later course)

Conclusion

- OTP is statistically secure if **used once**
- A first notion of security against passive adversary is IND-CPA
- $\mathsf{PRF} \Rightarrow \mathsf{IND}\text{-}\mathsf{CPA}$ secure schemes
- **Birthday paradox** = may need to double the size of key
- **Block-cipher modes** = encrypt efficiently arbitrarily long messages (padding sometimes necessary)
- CTR mode has good properties (but wait GCM)
- AES = common PRP (hence PRF) used in block-cipher modes
- Malleable encryption ⇒ attacks against active adversaries (e.g. padding oracle/timing attacks)
- Authentication will help us!