
Crypto Engineering 2024
Hash functions

Léo Colisson Palais

leo.colisson-palais@univ-grenoble-alpes.fr
https://leo.colisson.me/teaching.html

blenderpoint
{"type": "addMe"}

mailto:leo.colisson-palais@univ-grenoble-alpes.fr
https://leo.colisson.me/teaching.html

Hash functions

blenderpoint
{"type": "addMe"}

What is a hash function?

Hash function

A hash function is a function h : {0,1}∗ → {0,1}n.

As it not really helpful, but based on applications, hash functions may have
multiple properties. Informally:
• Collision-resistance: hard to find a collision, i.e. x ̸= x′ such that
h(x) = h(x′)
• First-preimage resistance (one-way): given y, hard to find x such that
h(x) = y
• Second-preimage resistance: given a random x, hard to find x′ ̸= x such

that h(x) = h(x′)
• Hiding: given h(r∥x) for a long enough random r, hard to find x
• Universality: weaker assumption about the distribution of the output

Léo Colisson | 3

blenderpoint
{"type": "addMe"}

blenderpoint
{"type": "insertVideo","folder": "Video_bank/Teaching/Hash_functions/","filename": "coin_tossing_meme.mp4","stops": "8, 61, 90, 138, 161, 213, 269","nbFrames": "282","firstFrame": "","lastFrame": "","speed": ""}

What security property is needed?

?
Do we need collision resistance here?

A No
B Yes, to protect against malicious left cat
C Yes, to protect against malicious right cat

Léo Colisson | 4

blenderpoint
{"type": "addMe"}

What security property is needed?

?
Do we need collision resistance here?

A No

B Yes, to protect against malicious left cat If left cat knowns r, r′ s.t.
h(0∥r) = h(1∥r′) and wants outcome 0: reveal r if b′ = 0, else r′
(res = b′ ⊕ b = 0)

C Yes, to protect against malicious right cat

Léo Colisson | 4

blenderpoint
{"type": "addMe"}

What security property is needed?

?
Do we need hiding here?

A No
B Yes, to protect against malicious left cat
C Yes, to protect against malicious right cat

Léo Colisson | 5

blenderpoint
{"type": "addMe"}

What security property is needed?

?
Do we need hiding here?

A No

B Yes, to protect against malicious left cat

C Yes, to protect against malicious right cat If right cat can recover b
from h(b∥r), and wants outcome 0, just send b′ := b (res = b′ ⊕ b = 0).

Léo Colisson | 5

blenderpoint
{"type": "addMe"}

Applications hash functions

Hash function = many applications:
• Efficiently check integrity of file (fingerprint)
• Authentication (HMAC, NMAC, Envelope MAC. . .)
• IND-CCA constructions
• Secure password storage
• Organize, retrieve and/or cache data efficiently and/or securely (git, nix,

. . .)
• Blockchain (proof of work)
• Commitments
• Coin tossing
• Zero-knowledge proofs
• Multi-party computing
• . . .

Léo Colisson | 6

blenderpoint
{"type": "addMe"}

Formal definition

How to formally define collision-resistance?

First attempt: what about h is collision-resistant iff:

L0
test(x, x′):

if x ̸= x′ and h(x) = h(x′): return true
else: return false

≈
L1

test(x, x′):
return false

?

Léo Colisson | 7

blenderpoint
{"type": "addMe"}

Formal definition

?
Is this a reasonable definition?

1 Yes
2 No, because basically all functions would be collision-resistant
3 No, because basically no function would be collision-resistant

Léo Colisson | 8

blenderpoint
{"type": "addMe"}

Formal definition

?

Is this a reasonable definition?
1 Yes
2 No, because basically all functions would be collision-resistant
3 No, because basically no function would be collision-resistant

Very subtle issue in order of quantifiers. This definition says: h
collision-resistant iff ∀A, |Pr [A ⋄ L0 = 1]− Pr [A ⋄ L1 = 1] | ≤ negl(λ).
Since A appears after h, A can depend arbitrarily on h. So A could just

happen to hardcode a collision (x, x′), like:
A

return test(x, x′)
It is really

hard to find the code of A, but A still runs in polynomial time!
⇒We would like to fix h after A: public salt

Léo Colisson | 8

blenderpoint
{"type": "addMe"}

Formal definition

Salt = random publicly known value sampled to “customize” the function h.

Collision-resistance (flavor 1)

A hash function h : {0,1}∗ × {0,1}∗ → {0,1}∗ is collision resistant if:

Lhcr-real

s $← {0,1}λ
getsalt():

return s
test(x, x′):

if x ̸= x′ and h(s, x) = h(s, x′): return true
else: return false

≈

Lhcr-fake

s $← {0,1}λ
getsalt():

return s
test(x, x′):

Return false

Often: h(s, x) := h(s∥x). Léo Colisson | 9

blenderpoint
{"type": "addMe"}

Formal definition

Problem: this definition is rarely useful as it since we never explicitly check if
there is a collision: we just assume there is none.

Rather used in reductions: if A can distinguish L0 from L1, then we can build
A′ (calling A internally) that finds a collision against h (then, trivial to
distinguish Lhcr-real from Lhcr-fake). Hence this equivalent definition might be
easier to use:

Collision-resistance (flavor 2)

A hash function h is collision resistant if for any polynomially bounded
A:

Pr
s←{0,1}λ

(x,x′)←A(s)

[
h(s, x) = h(s, x′)

]
≤ negl(λ)

Léo Colisson | 10

blenderpoint
{"type": "addMe"}

Specificity of password hashing

blenderpoint
{"type": "addMe"}

Hashing password

?
Alice is creating a website, and, to provide extra-security, she de-
cides to store the user’s passwords by encrypting them with AES
in CTR mode. Is this a good idea, why?

A Yes
B No

Léo Colisson | 12

blenderpoint
{"type": "addMe"}

Hashing password

?
Alice is creating a website, and, to provide extra-security, she de-
cides to store the user’s passwords by encrypting them with AES
in CTR mode. Is this a good idea, why?

A Yes
B No To check the passwords, she needs the decryption key,

and this key will stay on the server. If the server is corrupted
(database stolen. . .) the key will also likely be stolen,
revealing the passwords.

Léo Colisson | 12

blenderpoint
{"type": "addMe"}

Hashing passwords

You should always hash the passwords you store in a database!

Léo Colisson | 13

blenderpoint
{"type": "addMe"}

Hashing passwords

If we can’t “decrypt” the password (sAlice,hAlice) (hash function), how can we
check if the password p is correct?

⇒ Check if h(sAlice,p) = hAlice!

Léo Colisson | 14

blenderpoint
{"type": "addMe"}

Hashing passwords

If we can’t “decrypt” the password (sAlice,hAlice) (hash function), how can we
check if the password p is correct?

⇒ Check if h(sAlice,p) = hAlice!

Léo Colisson | 14

blenderpoint
{"type": "addMe"}

Salt

Salt: useful in theory. . . But salt also useful in practice! (change hash for
every password) Otherwise
• Easy to see if two users have identical passwords
• Limit pre-computation attacks

Léo Colisson | 15

blenderpoint
{"type": "addMe"}

Rainbow tables

How to (try to) recover a hashed password with no salt?
• Method 1: brute force, restart from scratch for any new password
⇒ inefficient in time O(#passwords), efficient in space O(1)
• Method 2: brute force & store for re-use next time
⇒ efficient in time once the table is generated O(log#passwords), but
needs HUGE storage O(#passwords)

• Method 3: rainbow tables = time/space tradeoff
⇒ e.g. moderate time O(

√
#passwords), moderate storage O(

√
#passwords)

Léo Colisson | 16

blenderpoint
{"type": "addMe"}

Rainbow tables

wikipedia

H
ao4kd

R1
secret

H R2
jimbo9kpmw

H R3
rootrootv0d$x

abcdefgh

H
1vn6s

R1
bernie

H R2
zurichkolscx

H R3
myname8ntpy

passwd

H
dlcm4

R1
culture

H R2
cryptore3xes

H R3
linux231tik0

Different reduction function for each column = avoid long chains of collision

Léo Colisson | 17

blenderpoint
{"type": "addMe"}

Is salt enough?

Salting is necessary (cost attack n passwords = n× cost of attacking 1
password), but not enough: low password entropy = few used passwordsu t:

Léo Colisson | 18

blenderpoint
{"type": "addMe"}

Password hashing: recommendations

Mitigation: limit bruteforce attack with slow hash functions
(ideally on any hardware = memory-hard functions good candidate: assume
memory is equaly costly/fast everywhere)

OWASP recommends Don’t use!
Argon2 (ideally Argon2id) NTLM (Windows: too quick)

Scrypt (if Argon2 not available) MD5 (broken)
Bcrypt (legacy systems) SHA1 (broken)

PBKDF2 if FIPS-140 compliance
required

SHA256 (too quick)

+ good to add pepper (HMAC of hash, with a key stored outside the database
in case of SQL injection/backup access)

Léo Colisson | 19

blenderpoint
{"type": "addMe"}

Password hashing: recommendations

Mitigation: limit bruteforce attack with slow hash functions
(ideally on any hardware = memory-hard functions good candidate: assume
memory is equaly costly/fast everywhere)

OWASP

Many great guides: more details in Password Storage Cheat Sheet, testing guide. . .

recommends Don’t use!
Argon2 (ideally Argon2id) NTLM (Windows: too quick)

Scrypt (if Argon2 not available) MD5 (broken)
Bcrypt (legacy systems) SHA1 (broken)

PBKDF2 if FIPS-140 compliance
required

SHA256 (too quick)

+ good to add pepper (HMAC of hash, with a key stored outside the database
in case of SQL injection/backup access)

Léo Colisson | 19

blenderpoint
{"type": "addMe"}

Building hash functions

blenderpoint
{"type": "addMe"}

Merkle-Damgård

Fixed-size compression
function Hash function

Merkle-Damgård
transformation

Merkle-Damgård used in:
• MD5 (broken)
• SHA-1 (broken)
• SHA-2 (still safe)

Léo Colisson | 21

blenderpoint
{"type": "addMe"}

Merkle-Damgård

Merkle-Damgård construction

Let h : {0,1}n+t → {0,1}n be a compression function. Then the Merkle-Damgård trans-
formation of h is MDh : {0,1}∗ → {0,1}n where:

(actually, h(x) is defined only if x < 2t here, but we can improve the padding part)

Léo Colisson | 22

blenderpoint
{"type": "addMe"}

Merkle-Damgård

Theorem (Merkle-Damgård is collision resistant)

Let h : {0,1}n+t → {0,1}n be a collision-resistant compression function. Then the Merkle-
Damgård transformation MDh is collision resistant.

Proof. By contradiction, assume we found a collision x ̸= x′ against MDh, we want to find a
collision against h:

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

Merkle-Damgård

Theorem (Merkle-Damgård is collision resistant)

Let h : {0,1}n+t → {0,1}n be a collision-resistant compression function. Then the Merkle-
Damgård transformation MDh is collision resistant.

Proof. By contradiction, assume we found a collision x ̸= x′ against MDh, we want to find a
collision against h:

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

Merkle-Damgård

Theorem (Merkle-Damgård is collision resistant)

Let h : {0,1}n+t → {0,1}n be a collision-resistant compression function. Then the Merkle-
Damgård transformation MDh is collision resistant.

Proof. By contradiction, assume we found a collision x ̸= x′ against MDh, we want to find a
collision against h:

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

Merkle-Damgård

Theorem (Merkle-Damgård is collision resistant)

Let h : {0,1}n+t → {0,1}n be a collision-resistant compression function. Then the Merkle-
Damgård transformation MDh is collision resistant.

Proof. By contradiction, assume we found a collision x ̸= x′ against MDh, we want to find a
collision against h:

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

Merkle-Damgård

Theorem (Merkle-Damgård is collision resistant)

Let h : {0,1}n+t → {0,1}n be a collision-resistant compression function. Then the Merkle-
Damgård transformation MDh is collision resistant.

Proof. By contradiction, assume we found a collision x ̸= x′ against MDh, we want to find a
collision against h:

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

Merkle-Damgård

Theorem (Merkle-Damgård is collision resistant)

Let h : {0,1}n+t → {0,1}n be a collision-resistant compression function. Then the Merkle-
Damgård transformation MDh is collision resistant.

Proof. By contradiction, assume we found a collision x ̸= x′ against MDh, we want to find a
collision against h:

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

Merkle-Damgård

Theorem (Merkle-Damgård is collision resistant)

Let h : {0,1}n+t → {0,1}n be a collision-resistant compression function. Then the Merkle-
Damgård transformation MDh is collision resistant.

Proof. By contradiction, assume we found a collision x ̸= x′ against MDh, we want to find a
collision against h:

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

Merkle-Damgård

Theorem (Merkle-Damgård is collision resistant)

Let h : {0,1}n+t → {0,1}n be a collision-resistant compression function. Then the Merkle-
Damgård transformation MDh is collision resistant.

Proof. By contradiction, assume we found a collision x ̸= x′ against MDh, we want to find a
collision against h:

Léo Colisson | 23

blenderpoint
{"type": "addMe"}

Length-extension attack

Goal: Obtain Message Authentication Code (MAC, =“signature”, see next course) from hash
functions via h(k∥m).
Issue: Length-extension attack: With the MD construction, possible to get h(k∥m′) from
h(k∥m) (= sign a different message without knowing k).
How? Observation: “Knowing H(x), allows to predict the hash of any string that begins with
mdpad(x)”:

⇒

Léo Colisson | 24

blenderpoint
{"type": "addMe"}

Mitigate length-extension attack

Length-extension attack possible because the hash contains the full
internal state
Solutions:
• Wide-pipe construction: Output only, e.g., half of the final hash. Used in

SHA-512/224 and SHA-512/256 (SHA-2 family), while SHA-512 and
SHA-256 are vulnerable to this attack.
• Sponge construction: two phases absorb & squeeze, used in SHA-3

Léo Colisson | 25

blenderpoint
{"type": "addMe"}

Building à compression function

blenderpoint
{"type": "addMe"}

How to obtain compression functions?

Building a compression function h : {0,1}n+t → {0,1}n:
• From scratch
• From a block cipher (e.g. AES) E , choose what defines the key/message,

add feedforward (otherwise invertible):
• Davies–Meyer: h(x∥k) := Ek(x)⊕ x (e.g. used in SHA-2 with a custom cipher)
• Matyas–Meyer–Oseas: h(x∥x′) := Eg(x)(x′)⊕ x′
• Miyaguchi–Preneel: h(x∥x′) := Eg(x)(x′)⊕ x′ ⊕ x
• Hirose

Proofs typically done in the Ideal Cipher Model to model E

Léo Colisson | 27

blenderpoint
{"type": "addMe"}

Security models

blenderpoint
{"type": "addMe"}

Ideal models

In Ideal Cipher Model (resp. Random Oracle Model), we assume a function
behaves like a randomly uniformly sampled permutation (resp. function), that
the parties (including the attacker) can only access in a black-box way (for
ideal ciphers, the parties can also ask for the inverse of the function). But:
• In practice, me must instantiate it with an actual permutation (resp.

function), e.g. AES (resp. SHA-3):
⇒ we have then heuristic security (no reduction)
• There exists (pathologic) schemes secure in the ROM [Bellare, Boldyreva,

Palacio 03] but impossible to instantiate
• Yet, no non-pathological construction is known to be secure in the ROM

but insecure in practice

Léo Colisson | 29

blenderpoint
{"type": "addMe"}

https://eprint.iacr.org/2003/077.pdf
https://eprint.iacr.org/2003/077.pdf

Idealized model ̸= standard model

Microsoft needed a hash function for ROM integrity check for the XBOX:
• They used Tiny Encryption Algorithm (TEA, block-cipher) as a basic cipher

with Davies-Meyer 1

• Issue: for any k, easy to find k′ such that TEAk(m) = TEAk′(m) (like flip a
bit of k), and⇒ Trivial to get a collision:

DM− TEA(x∥k′) = TEAk′(x) = TEAk(x) = DM− TEA(x∥k)

• Yet, TEA is still a good PRP (once we sample a random k)!

1Details of attack in [Steil, 2005]
https://events.ccc.de/congress/2005/fahrplan/events/559.en.html

Léo Colisson | 30

blenderpoint
{"type": "addMe"}

https://events.ccc.de/congress/2005/fahrplan/events/559.en.html

Random-Oracle Model

Random-Oracle Model (ROM)

A protocol is said to be defined in the Random-Oracle Model (ROM) if all
parties (including honest parties when defining the protocol and adver-
saries) have oracle access to H defined as:

Random Oracle
T := empty assoc. array
H(x ∈ {0,1}∗):

if T[x] undefined:
T[x] $← {0,1}out

return T[x]

Léo Colisson | 31

blenderpoint
{"type": "addMe"}

Random-Oracle Model

Remarks:
• Lazy sampling instead of sampling full H = needed in reductions to have

polynomial adversary:

Attacker against problem YYY
(poly(λ))

A
(poly(λ))

ROM
(poly(λ))

• ROM ̸= PRF!!! In ROM the parties have only oracle access to H, in PRF the
parties can also see the “code” of H. This allow new proof techniques!

Léo Colisson | 32

blenderpoint
{"type": "addMe"}

Ideal-Cipher Model

Ideal-Cipher Model = pick a random permutation for each key

Ideal-Cipher Model (ICM)

A protocol is said to be defined in the Ideal-Cipher Model (ICM) if all parties (including
honest parties when defining the protocol and adversaries) have oracle access to F and
F−1 defined as:

Ideal-Cipher Model

T := empty assoc. array of assoc. array
F(k ∈ {0,1}λ, x ∈ {0,1}blen):

if T[k][x] undefined:
T[k][x] $← {0,1}blen \ T[k].values

return T[k][x]
F−1(k ∈ {0,1}λ, y ∈ {0,1}blen):

if ∃x s.t. T[k][x] = y:
return x

else:
x $← {0,1}blen \ T[k].keys
T[k][x] := y
return x

Léo Colisson | 33

blenderpoint
{"type": "addMe"}

Main hash functions

blenderpoint
{"type": "addMe"}

Comparison of the main hash functions

Long story short: use SHA-3, or SHA-2 (but not for MAC). Never use MD5, SHA-0, SHA-1

Léo Colisson | 35

blenderpoint
{"type": "addMe"}

