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What is a hash function?

A hash function is a function h : {0, 1}* — {0, 1}".

As it not really helpful, but based on applications, hash functions may have
multiple properties. Informally:

e Collision-resistance: hard to find a collision, i.e. x # x’ such that

h(x) = h(X)
e First-preimage resistance (one-way): given y, hard to find x such that
h(x) =y

Second-preimage resistance: given a random x, hard to find x’ # x such
that h(x) = h(x’)

Hiding: given h(r||x) for a long enough random r, hard to find x
Universality: weaker assumption about the distribution of the output
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What security property is needed?

Do we need collision resistance here?

O No
@ VYes, to protect against malicious left cat
@ Ves, to protect against malicious right cat
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What security property is needed?

Do we need collision resistance here?
O No X

@ VYes, to protect against malicious left cat / If left cat knowns r, r’ s.t.

h(0||r) = h(1||r") and wants outcome 0: reveal rif b’ = 0, else r’
(res=b"@b=0)

@ Ves, to protect against malicious right cat x

Me who knew a

The IOser collision for h
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What security property is needed?

Do we need hiding here?

O No
° @ VYes, to protect against malicious left cat
@ Ves, to protect against malicious right cat
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What security property is needed?

Do we need hiding here?
O No x
@ VYes, to protect against malicious left cat x

@ VYes, to protect against malicious right cat / If right cat can recover b
from h(b||r), and wants outcome 0, just send b’ := b (res = b’ & b = 0).
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Applications hash functions

Hash function = many applications:
e Efficiently check integrity of file (fingerprint)
e Authentication (HMAC, NMAC, Envelope MAC...)
e IND-CCA constructions
e Secure password storage
¢ Organize, retrieve and/or cache data efficiently and/or securely (git, nix,
er)
¢ Blockchain (proof of work)
e Commitments
¢ Coin tossing
e Zero-knowledge proofs
e Multi-party computing

Léo Colisson | 6
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Formal definition

How to formally define collision-resistance?

First attempt: what about h is collision-resistant iff:

Lo L

TEST(X, X):
return false

TEST(X, X'):
if x # x’ and h(x) = h(X): return true
else: return false

%
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Formal definition

Is this a reasonable definition?

O ves

® No, because basically all functions would be collision-resistant
©® No, because basically no function would be collision-resistant

Léo Colisson | 8
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Formal definition

Is this a reasonable definition?

@ vYes

® No, because basically all functions would be collision-resistant

© No, because basically no function would be collision-resistant
/ Very subtle issue in order of quantifiers. This definition says: h
collision-resistant iff VA, | Pr[ Ao Lo =1] = Pr[ Ao Ly =1]| < negl()).
Since A appears after h, A can depend arbitrarily on h. So A could just

A

return TEST(X, x')

happen to hardcode a collision (x, x'), like: Itis really

hard to find the code of A, but A still runs in polynomial time!
= We would like to fix h after A: public salt
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Formal definition

Salt = random publicly known value sampled to “customize” the function h.

Collision-resistance (flavor 1)

A hash function h: {0,1}* x {@,1}* — {0, 1}* is collision resistant if:

h
[’cr-real rh
5 N cr-fake
s 10,1} s (0,1
GETSALT():
— ~ | GETSALT():
return s P —
, return s
TEST(X, X'): TEST(X, X'):
if x # X’ and h(s,x) = h(s,x'): return true| |——-——~=
’ Return false
else: return false

Often: h(S,X) = h(S”X) Léo Colisson | 9
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Formal definition

Problem: this definition is rarely useful as it since we never explicitly check if
there is a collision: we just assume there is none.

Rather used in reductions: if A can distinguish £, from £4, then we can build
A’ (calling A internally) that finds a collision against h (then, trivial to
distinguish E?r_real from L?r_fake). Hence this equivalent definition might be
easier to use:

Collision-resistance (flavor 2)

A hash function h is collision resistant if for any polynomially bounded
A:
Pr  [h(s,x) = h(s,X')] < negl(\)

s<{0,1}*
(x,x")«A(S)

Léo Colisson | 10
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Specificity of password hashing
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Hashing password

Alice is creating a website, and, to provide extra-security, she de-
cides to store the user’s passwords by encrypting them with AES
in CTR mode. Is this a good idea, why?

O Yes
® No
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Hashing password

Alice is creating a website, and, to provide extra-security, she de-
cides to store the user’s passwords by encrypting them with AES
in CTR mode. Is this a good idea, why?

O Yes ¥

® No  To check the passwords, she needs the decryption key,
and this key will stay on the server. If the server is corrupted
(database stolen...) the key will also likely be stolen,
revealing the passwords.
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Hashing passwords

You should always hash the passwords you store in a database!

DO YOU HASH YOUR USER'S PASSWORDS?

ALWAYS

Léo Colisson | 13
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Hashing passwords

If we can't “"decrypt” the password (Sajice, haiice) (hash function), how can we
check if the password p is correct?

Léo Colisson | 14
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Hashing passwords

If we can't “"decrypt” the password (Sajice, haiice) (hash function), how can we
check if the password p is correct?

— Check if h(Sajice, P) = Rajice!
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Salt: useful in theory... But salt also useful in practice! (change hash for
every password) Otherwise

e Easy to see if two users have identical passwords
e Limit pre-computation attacks

Léo Colisson | 15
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Rainbow tables

How to (try to) recover a hashed password with no salt?

e Method 1: brute force, restart from scratch for any new password
= inefficient in time O(#passwords), efficient in space O(1)

e Method 2: brute force & store for re-use next time
= efficient in time once the table is generated O(log #passwords), Put
needs HUGE storage O(#passwords)

e Method 3: rainbow tables = time/space tradeoff

= e.g. moderate time O(,/#passwords), moderate storage O(,/#passwords)
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Rainbow tables

Different reduction function for each column = avoid long chains of collision

Léo Colisson | 17
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Is salt enough?

Salting is necessary (cost attack n passwords = nx cost of attacking 1
password), but not enough: low password entropy = few used passwordsu t:

ooooonpoooooooon ~28 BITSOFENNJPY WAS IT TROMBONE? NQ,
UNCOMMON ooooon TROUBADOR. AND ONE OF
DEDDV'JDEIJ o g
(Nw«simsm UNKNOWNS - oo || TE s wAsA ZERO?
Dﬂﬂg ° AND THERE WJAS
27= 3 DAYS AT SOME SMBOL...
Tr‘@u b4dor &3 0 e/
‘“"";;‘.‘5,;"‘““;:;52“‘“’"
ps? Rt s T 1t o
Cg S5UBS] TLHTONS ooo - 'D":Fmsm:mw) P
ooo IFFICOLTY TO GUESS : IFFI REMEMBER:
(mmimmn PO HARD
15 NS ONE OF A FeWw Common oRAATS)
~ b BITS OF ENTROPY
oooooonooonog
0oooooooooon
correct horse battery stople || 7770
[E‘Sgufj_lu Eggggm Eg:gg] SNFJ_h'j 0onoooooooo
. 1 ' 2"'=5%0 YEPRS AT
\ Q / 1000 GUESSES/sec
COMrON WoRDS DIFFICOLTY To GUESS:
HARD VEMORIZED IT

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PRSSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS To GUESS,
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Password hashing: recommendations

Mitigation: limit bruteforce attack with slow hash functions
(ideally on any hardware = memory-hard functions good candidate: assume
memory is equaly costly/fast everywhere)

v’ OWASP recommends ¥ Don't use!
Argon2 (ideally Argon2id) NTLM (Windows: too quick)
Scrypt (if Argon2 not available) MD5 (broken)
Bcrypt (legacy systems) SHA1 (broken)
PBKDF2 if FIPS-140 compliance SHA256 (too quick)
required

+ good to add pepper (HMAC of hash, with a key stored outside the database
in case of SQL injection/backup access)

Léo Colisson | 19
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Password hashing: recommendations

Mitigation: limit bruteforce attack with slow hash functions
(ideally on any hardware = memory-hard functions good candidate: assume

memory is equa|y ncthv//fact ovannaharo)
F—tMany great guides: more details in Password Storage Cheat Sheet, testing guide...

v’ OWASP recommends ¥ Don't use!
Argon2 (ideally Argon2id) NTLM (Windows: too quick)
Scrypt (if Argon2 not available) MD5 (broken)
Bcrypt (legacy systems) SHA1 (broken)
PBKDF2 if FIPS-140 compliance SHA256 (too quick)
required

+ good to add pepper (HMAC of hash, with a key stored outside the database
in case of SQL injection/backup access)
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Building hash functions
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Merkle-Damgard

Merkle-Damgard
Fixed-size compression transformation

function

Hash function

Merkle-Damgard used in:
e MD5 (broken)
e SHA-1 (broken)
e SHA-2 (still safe)

Léo Colisson | 21
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Merkle-Damgard

Merkle-Damgard construction

Let h: {0,1}"" — {0, 1}" be a compression function. Then the Merkle-Damgard trans-
formation of his MD,: {0,1}* — {0, 1}" where:

MDy(x):
MDPAD, (x) X1l -+ + [|Xk+1 := MDPAD,(x)
{ := |x|, as length-t binary number // each x; is t bits
while |x| not a multiple of t: Yo = 0"
x = x||0 fori=1tok+1:
return x||¢ i = h(yi-1llxi)
output Yy

x| % | % [ o [ % [] Wl
I L
S i

(actually, h(x) is defined only if x < 2 here, but we can improve the padding part)

x=‘

Léo Colisson | 22
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Merkle-Damgard

Theorem (Merkle-Damgard is collision resistant)

Leth: {0,1}" — {0, 1}" be a collision-resistant compression function. Then the Merkle-
Damgard transformation MDy, is collision resistant.

Proof. By contradiction, assume we found a collision x # x’ against MDj,, we want to find a
collision against h:

x = Xk H |x]
L G
JEELTU T
x= i [] I« =

Gl Ll
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Merkle-Damgard

Theorem (Merkle-Damgard is collision resistant)

Leth: {0,1}" — {0, 1}" be a collision-resistant compression function. Then the Merkle-
Damgard transformation MDy, is collision resistant.

Proof. By contradiction, assume we found a collision x # x’ against MDj,, we want to find a
collision against h:

x = X3 ‘ X |

LU

Gl Gl
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Merkle-Damgard

Theorem (Merkle-Damgard is collision resistant)

Leth: {0,1}" — {0, 1}" be a collision-resistant compression function. Then the Merkle-
Damgard transformation MDy, is collision resistant.

Proof. By contradiction, assume we found a collision x # x’ against MDj,, we want to find a
collision against h:

x= ka

v —»B—»B—»B_' h MOH)

D e
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Merkle-Damgard

Theorem (Merkle-Damgard is collision resistant)

Leth: {0,1}" — {0, 1}" be a collision-resistant compression function. Then the Merkle-
Damgard transformation MDy, is collision resistant.

Proof. By contradiction, assume we found a collision x # x’ against MDj,, we want to find a
collision against h:

= [ % [

*@FB‘@ Lw»
LFURUTRN A
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Merkle-Damgard

Theorem (Merkle-Damgard is collision resistant)

Leth: {0,1}" — {0, 1}" be a collision-resistant compression function. Then the Merkle-
Damgard transformation MDy, is collision resistant.

Proof. By contradiction, assume we found a collision x # x’ against MDj,, we want to find a
collision against h:

X =

Xkli.

v —»B—»B—»B_' h MOH)

=[] T [~ T=f® =
L
Yo »B\—;B\_.B_’ IE\_H}. MDp(x)
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Merkle-Damgard

Theorem (Merkle-Damgard is collision resistant)

Leth: {0,1}" — {0, 1}" be a collision-resistant compression function. Then the Merkle-
Damgard transformation MDy, is collision resistant.

Proof. By contradiction, assume we found a collision x # x’ against MDj,, we want to find a
collision against h:
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Merkle-Damgard

Theorem (Merkle-Damgard is collision resistant)

Leth: {0,1}" — {0, 1}" be a collision-resistant compression function. Then the Merkle-
Damgard transformation MDy, is collision resistant.

Proof. By contradiction, assume we found a collision x # x’ against MDj,, we want to find a
collision against h:
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Merkle-Damgard

Theorem (Merkle-Damgard is collision resistant)

Leth: {0,1}" — {0, 1}" be a collision-resistant compression function. Then the Merkle-
Damgard transformation MDy, is collision resistant.

Proof. By contradiction, assume we found a collision x # x’ against MDj,, we want to find a
collision against h:

S 1I®0 @

- o TATA- - gihgiiens

Lol Goliem
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Length-extension attack

Goal: Obtain Message Authentication Code (MAC, ="signature”, see next course) from hash

functions via h(k|m).

Issue: Length-extension attack: With the MD construction, possible to get h(k|jm’) from

h(k||m) (= sign a different message without knowing k).

How? Observation: “Knowing H(x), allows to predict the hash of any string that begins with

MDPAD(X)":
k

m MD padding

[[e1106011 11001101 | 01000011 10010111 | 01010000 00000000 | 00000000 00101000 |

k m I MD padding
D ——— v————/\—ﬂ
|

1 [ o1100011 nanum | 1000011 10910111 | o1010000 eeuoeaum | 0000000 mmmouu ‘ 00000000 umoeuuo |
|

LT NN L

=

same computation as in MAC(k, m)
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Mitigate length-extension attack

Length-extension attack possible because the hash contains the full
internal state
Solutions:
e Wide-pipe construction: Output only, e.g., half of the final hash. Used in
SHA-512/224 and SHA-512/256 (SHA-2 family), while SHA-512 and
SHA-256 are vulnerable to this attack.

® Sponge construction: two phases absorb & squeeze, used in SHA-3

absorbing | squeezing
Pn—l : Zo Zl

Léo Colisson | 25
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Building a compression function
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How to obtain compression functions?

Building a compression function h: {0, 1}*t — {0, 1}™
e From scratch

* From a block cipher (e.g. AES) &, choose what defines the key/message,
add feedforward (otherwise invertible):
® Davies-Meyer: h(x| k) := E(x) @ x (e.g. used in SHA-2 with a custom cipher)
* Matyas-Meyer-Oseas: h(x||X") :== g0 (X) ® X’
* Miyaguchi-Preneel: h(x||x’) :== g (X') DX’ ® X
® Hirose

Proofs typically done in the Ideal Cipher Model to model £

Léo Colisson | 27
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Security models
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Ideal models

In Ideal Cipher Model (resp. Random Oracle Model), we assume a function
behaves like a randomly uniformly sampled permutation (resp. function), that
the parties (including the attacker) can only access in a black-box way (for
ideal ciphers, the parties can also ask for the inverse of the function). But:

¢ In practice, me must instantiate it with an actual permutation (resp.
function), e.g. AES (resp. SHA-3):
= we have then heuristic security (no reduction)

e There exists (pathologic) schemes secure in the ROM [Bellare, Boldyreva,
Palacio 03] but impossible to instantiate

® Yet, no non-pathological construction is known to be secure in the ROM
but insecure in practice

Léo Colisson | 29
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https://eprint.iacr.org/2003/077.pdf
https://eprint.iacr.org/2003/077.pdf

Idealized model # standard model

Microsoft needed a hash function for ROM integrity check for the XBOX:

e They used Tiny Encryption Algorithm (TEA, block-cipher) as a basic cipher
with Davies-Meyer

e Issue: for any k, easy to find k’ such that TEA,(m) = TEA, (m) (like flip a
bit of k), and = Trivial to get a collision:

DM — TEA(x||K') = TEAw (x) = TEA,(X) = DM — TEA(x||K)

e Yet, TEA is still a good PRP (once we sample a random k)!

"Details of attack in [Steil, 2005]
https://events.ccc.de/congress/2005/fahrplan/events/559.en.html
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Random-Oracle Model

Random-Oracle Model (ROM)

A protocol is said to be defined in the Random-Oracle Model (ROM) if all
parties (including honest parties when defining the protocol and adver-
saries) have oracle access to H defined as:

Random Oracle

T := empty assoc. array
H(x e {0,1}*):
if T[x] undefined:
T[x] <& {0,1}0ut
return T[x]

Léo Colisson | 31
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Random-Oracle Model

Remarks:

e Lazy sampling instead of sampling full H = needed in reductions to have
polynomial adversary:

Attacker against problem YYY N A ROM
(poly(A)) (poly(A)) (poly(A))

e ROM +# PRF!"' In ROM the parties have only oracle access to H, in PRF the
parties can also see the “code” of H. This allow new proof techniques!
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Ideal-Cipher Model

Ideal-Cipher Model = pick a random permutation for each key

Ideal-Cipher Model (ICM)

A protocol is said to be defined in the Ideal-Cipher Model (ICM) if all parties (including
honest parties when defining the protocol and adversaries) have oracle access to F and

F~! defined as:

Ideal-Cipher Model

T := empty assoc. array of assoc. array
F(k € {0,1}*,x € {0,1}""):
if T[k][x] undefined:
T[K][x] <& {0, 1}*1*"\ T[k].values
return T[K][x]
Fl(ke{0,1}*,y € {0,1}P1e"):
if Ixs.t. Tk|[x] = y:
return x
else:
x <& {0, 131"\ T[k].keys
TK][X] =y
return x

Leo Colisson [ 33
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Main hash functions
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Comparison of the main hash functions

Long story short: use SHA-3, or SHA-2 (but not for MAC). Never use MD5, SHA-0, SHA-1

§ Security | performance on
Security | against | ¢, 1.\e (median cpb)
against | length -
Output | Internal  Block collision | extension
Algorithm and size | statesize size attacks | attacks | Long First
variant (bits) (bits)  (bits)  Rounds  Operations (bits) (bits) | messages 8bytes | published
MDS (as reference) | 128 128 | 512 4 And, Xor, Or, g 499 55.00 1992
@x32) (16 operations | Rot,
(collisions 0
h | Add(mod 222
in eac (moa %) | (2R
round)
SHA-0 160 10 | 512 80 And, Xor, Or, <34 SSHAT | =SHA1 | 1993
6x32) Rot, (collisions
Add (mod 2°2) | found)
0
SHA-1 <63 347 5200 1995
(collisions
found)(€?!
SHA2|  SHA-224 24 2 | 512 64 And, Xor, Or, 2 - 762 8450 2004
SHA-256 256 (8x32) Rot, Shr, 7.63 85.25 2001
128 0
Add (mod 232)
SHA-384 384 512 | 1024 80 And, Xor, Or, 192 128 512 13575 | 2001
SHA512 512 B=ED (=5 256 otel 506 13550 | 2001
Add (mod 2%4)
SHAS12/224| 224 112 288 | =SHA384 ~SHA384 2012
SHAS12/256 | 256 128 256
SHA-3| SHA3-224 224 1600 | 1152 2455 | And,Xor Rot, 12 148 812 15425 | 2015
SHA3-256 256 | (5x5x64)| 1088 Not 128 512 859 155.50
SHA3-384 384 832 192 768 1106 | 164.00
SHA3-512 512 576 256 1024 1588 | 164.00
SHAKE128 | d (arbitrary) 1344 min(d/2,128) 256 7.08 155.25
SHAKE256 | d (arbitrary) 1088 min(d/2,256) 512 859 155.50
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