Crypto Engineering 2024 Hash functions

Léo Colisson Palais

leo.colisson-palais@univ-grenoble-alpes.fr <https://leo.colisson.me/teaching.html>

Hash functions

What is a hash function?

Hash function

A hash function is a function $h:\{\mathbf{0},1\}^*\rightarrow\{\mathbf{0},1\}^n.$

As it not really helpful, but based on applications, hash functions may have **multiple properties**. Informally:

- **Collision-resistance**: hard to find a collision, i.e. $x \neq x'$ such that $h(x) = h(x')$
- **First-preimage resistance** (one-way): given *y*, hard to find *x* such that $h(x) = y$
- **Second-preimage resistance**: given a random x , hard to find $x' \neq x$ such that $h(x) = h(x')$
- **Hiding**: given *h*(*r*∥*x*) for a long enough random *r*, hard to find *x*
- **Universality**: weaker assumption about the distribution of the output

Do we need collision resistance here?

A No

?

B Yes, to protect against malicious left cat

C Yes, to protect against malicious right cat

Applications hash functions

Hash function = many **applications**:

- Efficiently check integrity of file (fingerprint)
- Authentication (HMAC, NMAC, Envelope MAC...)
- **IND-CCA** constructions
- Secure password storage
- Organize, retrieve and/or cache data efficiently and/or securely (git, nix, . . .)
- Blockchain (proof of work)
- Commitments
- Coin tossing
- Zero-knowledge proofs
- Multi-party computing

 \bullet ...

How to formally define collision-resistance?

First attempt: what about *h* is collision-resistant iff:

?

Is this a reasonable definition?

1 Yes

?

2 No, because basically all functions would be collision-resistant

3 No, because basically no function would be collision-resistant Very **subtle** issue in order of quantifiers. This definition says: *h* collision-resistant iff $\forall A, |Pr[A \circ \mathcal{L}_0 = 1] - Pr[A \circ \mathcal{L}_1 = 1]| < \text{neql}(\lambda)$. Since A appears **after** *h*, A can depend arbitrarily on *h*. So A could just

happen to **hardcode** a collision (*x*, *x* ′), like:

$$
\left\vert \text{It is really}\right\vert
$$

 \mathcal{A} $return TEST(X, X')$

hard to find the code of A , but A still runs in polynomial time! ⇒ We would like to fix *h* **after** A: public **salt**

Salt = random publicly known value sampled to "customize" the function *h*.

Collision-resistance (flavor 1)

A hash function $h \colon \{\mathsf{0},1\}^* \times \{\mathsf{0},1\}^* \to \{\mathsf{0},1\}^*$ is collision resistant if:

Often: $h(s, x) := h(s\|x)$. Léo Colisson | 9

Problem: this definition is **rarely useful as it** since we never explicitly check if there is a collision: we just assume there is none.

Rather **used in reductions**: if A can distinguish \mathcal{L}_0 from \mathcal{L}_1 , then we can build \mathcal{A}' (calling $\mathcal A$ internally) that finds a collision against h (then, trivial to distinguish $\mathcal{L}^h_\text{cr-real}$ from $\mathcal{L}^h_\text{cr-fake}$). Hence this equivalent definition might be easier to use:

Collision-resistance (flavor 2)

A hash function *h* is collision resistant if for any polynomially bounded \mathcal{A} :

$$
\Pr_{\substack{s \leftarrow \{0,1\}^\lambda \\ (x,x') \leftarrow \mathcal{A}(s)}} \left[h(s,x) = h(s,x') \right] \leq \mathsf{negl}(\lambda)
$$

Specificity of password hashing

Hashing password

Hashing password

Alice is creating a website, and, to provide extra-security, she decides to store the user's passwords by encrypting them with AES in CTR mode. Is this a good idea, why?

A Yes

?

B No $\sqrt{\ }$ To check the passwords, she needs the decryption key, and this key will stay on the server. If the server is corrupted (database stolen. . .) the key will also likely be stolen, revealing the passwords.

Hashing passwords

You should always hash the passwords you store in a database!

Hashing passwords

If we can't "decrypt" the password (s_{Alice}, h_{Alice}) (hash function), how can we check if the password *p* is correct?

Hashing passwords

If we can't "decrypt" the password (s_{Alice}, h_{Alice}) (hash function), how can we check if the password *p* is correct?

 \Rightarrow Check if $h(s_{\text{Alice}}, p) = h_{\text{Alice}}!$

Salt: useful in theory. . . But **salt also useful in practice**! (change hash for every password) Otherwise

- Easy to see if two users have identical passwords
- Limit **pre-computation** attacks

Rainbow tables

How to (try to) recover a hashed password with no salt?

- **Method 1**: brute force, restart from scratch for any new password \Rightarrow inefficient in time $O(\#_{\text{passwords}})$, efficient in space $O(1)$
- **Method 2**: brute force & store for re-use next time \Rightarrow efficient in time once the table is generated $O(\log$ # passwords), but needs HUGE storage $O(\#_{\text{passwords}})$
- **Method 3**: **rainbow tables** = time/space tradeoff

 \Rightarrow e.g. moderate time $O(\sqrt{\#_{\mathsf{passwords}}})$, moderate storage $O(\sqrt{\#_{\mathsf{passwords}}})$

Rainbow tables

Different reduction function for each column = avoid long chains of collision

Is salt enough?

Salting is necessary (cost attack *n* passwords = *n*× cost of attacking 1 password), but not enough: low password entropy = few used passwordsu t:

Léo Colisson | 18

Password hashing: recommendations

Mitigation: limit bruteforce attack with **slow hash functions**

(ideally on **any** hardware = memory-hard functions good candidate: assume memory is equaly costly/fast everywhere)

OWASP recommends **A** Don't use!

Argon2 (ideally Argon2id) NTLM (Windows: too quick) Scrypt (if Argon2 not available) MD5 (broken) Bcrypt (legacy systems) SHA1 (broken) PBKDF2 if FIPS-140 compliance required

SHA256 (too quick)

+ good to add **pepper** (HMAC of hash, with a key stored outside the database in case of SQL injection/backup access)

Password hashing: recommendations

Mitigation: limit bruteforce attack with **slow hash functions**

(ideally on **any** hardware = memory-hard functions good candidate: assume memory is equaly costly/fast everywhere)

Many great guides: more details in Password Storage Cheat Sheet, testing guide...

OWASP recommends Don't use!

Argon2 (ideally Argon2id) NTLM (Windows: too quick) Scrypt (if Argon2 not available) MD5 (broken) Bcrypt (legacy systems) SHA1 (broken) PBKDF2 if FIPS-140 compliance required

SHA256 (too quick)

+ good to add **pepper** (HMAC of hash, with a key stored outside the database in case of SQL injection/backup access)

Building hash functions

Merkle-Damgård used in:

- MD5 (broken)
- SHA-1 (broken)
- SHA-2 (still safe)

Merkle-Damgård construction

Let $h \colon \{\mathsf{0},1\}^{n+t} \to \{\mathsf{0},1\}^n$ be a compression function. Then the Merkle-Damgård transformation of h is MD $_h\colon \{\mathsf{0},1\}^* \to \{\mathsf{0},1\}^n$ where:

(actually, $h(x)$ is defined only if $x < 2^t$ here, but we can improve the padding part)

Léo Colisson | 22

Theorem (Merkle-Damgård is collision resistant)

Let $h\colon \{\mathbf{0},1\}^{n+t}\to \{\mathbf{0},1\}^n$ be a collision-resistant compression function. Then the Merkle-Damgård transformation MD*^h* is collision resistant.

Theorem (Merkle-Damgård is collision resistant)

Let $h\colon \{\mathbf{0},1\}^{n+t}\to \{\mathbf{0},1\}^n$ be a collision-resistant compression function. Then the Merkle-Damgård transformation MD*^h* is collision resistant.

Theorem (Merkle-Damgård is collision resistant)

Let $h\colon \{\mathbf{0},1\}^{n+t}\to \{\mathbf{0},1\}^n$ be a collision-resistant compression function. Then the Merkle-Damgård transformation MD*^h* is collision resistant.

Theorem (Merkle-Damgård is collision resistant)

Let $h\colon \{\mathbf{0},1\}^{n+t}\to \{\mathbf{0},1\}^n$ be a collision-resistant compression function. Then the Merkle-Damgård transformation MD*^h* is collision resistant.

Theorem (Merkle-Damgård is collision resistant)

Let $h\colon \{\mathbf{0},1\}^{n+t}\to \{\mathbf{0},1\}^n$ be a collision-resistant compression function. Then the Merkle-Damgård transformation MD*^h* is collision resistant.

Theorem (Merkle-Damgård is collision resistant)

Let $h\colon \{\mathbf{0},1\}^{n+t}\to \{\mathbf{0},1\}^n$ be a collision-resistant compression function. Then the Merkle-Damgård transformation MD*^h* is collision resistant.

Theorem (Merkle-Damgård is collision resistant)

Let $h\colon \{\mathbf{0},1\}^{n+t}\to \{\mathbf{0},1\}^n$ be a collision-resistant compression function. Then the Merkle-Damgård transformation MD*^h* is collision resistant.

Theorem (Merkle-Damgård is collision resistant)

Let $h\colon \{\mathbf{0},1\}^{n+t}\to \{\mathbf{0},1\}^n$ be a collision-resistant compression function. Then the Merkle-Damgård transformation MD*^h* is collision resistant.

Length-extension attack

Goal: Obtain Message Authentication Code (MAC, ="signature", see next course) from hash functions via *h*(*k*∥*m*).

Issue: **Length-extension attack**: With the MD construction, possible to get *h*(*k*∥*m*′) from *h*(*k*∥*m*) (= sign a different message without knowing *k*).

How? Observation: "Knowing *H*(*x*), allows to predict the hash of any string that begins with $MDPAD(X)$ ":

Mitigate length-extension attack

Length-extension attack possible because the hash **contains the full internal state**

Solutions:

- **Wide-pipe construction**: Output only, e.g., half of the final hash. Used in SHA-512/224 and SHA-512/256 (SHA-2 family), while SHA-512 and SHA-256 are vulnerable to this attack.
- **Sponge construction**: two phases absorb & squeeze, used in SHA-3

Building à compression function

Building a compression function $h \colon \{0,1\}^{n+t} \to \{0,1\}^n$:

- From scratch
- From a block cipher (e.g. AES) \mathcal{E} , choose what defines the key/message, add feedforward (otherwise invertible):
	- Davies–Meyer: $h(x||k) := \mathcal{E}_k(x) \oplus x$ (e.g. used in SHA-2 with a custom cipher)
	- \bullet Matyas–Meyer–Oseas: $h(x||x') \coloneqq \mathcal{E}_{g(x)}(x') \oplus x'$
	- \bullet Miyaguchi–Preneel: $h(x\|x')\coloneqq \mathcal{E}_{g(x)}(x')\oplus x'\oplus x'$
	- Hirose

Proofs typically done in the **Ideal Cipher Model** to model $\mathcal E$

Security models

Ideal models

In Ideal Cipher Model (resp. Random Oracle Model), we assume a function behaves like a randomly uniformly sampled permutation (resp. function), that the parties (including the attacker) can only access in a black-box way (for ideal ciphers, the parties can also ask for the inverse of the function). But:

- In practice, me must instantiate it with an actual permutation (resp. function), e.g. AES (resp. SHA-3):
	- ⇒ we have then **heuristic security** (no reduction)
- There exists (pathologic) schemes secure in the ROM [\[Bellare, Boldyreva,](https://eprint.iacr.org/2003/077.pdf) [Palacio 03\]](https://eprint.iacr.org/2003/077.pdf) but impossible to instantiate
- Yet, no non-pathological construction is known to be secure in the ROM but insecure in practice

Microsoft needed a hash function for ROM integrity check for the XBOX:

- They used Tiny Encryption Algorithm (TEA, block-cipher) as a basic cipher with Davies-Meyer ¹
- \bullet Issue: for any k , easy to find k' such that TEA $_k(m) = \mathsf{TEA}_{k'}(m)$ (like flip a bit of *k*), and \Rightarrow Trivial to get a collision:

$$
\mathsf{DM}-\mathsf{TEA}(x\|k')=\mathsf{TEA}_{k'}(x)=\mathsf{TEA}_k(x)=\mathsf{DM}-\mathsf{TEA}(x\|k)
$$

• Yet, TEA is still a good PRP (once we sample a random *k*)!

 1 Details of attack in [Steil, 2005] <https://events.ccc.de/congress/2005/fahrplan/events/559.en.html> Léo Colisson | 30

Random-Oracle Model

Random-Oracle Model (ROM)

A protocol is said to be defined in the Random-Oracle Model (ROM) if all parties (including honest parties when defining the protocol and adversaries) have oracle access to *H* defined as:

```
Random Oracle
T \coloneqq empty assoc. array
H(x \in \{0, 1\}^*):
 if T[x] undefined:
      T[X] \stackrel{\$}{\leftarrow} \{0,1\}^{\texttt{out}}return T[x]
```
Random-Oracle Model

Remarks:

• **Lazy sampling** instead of sampling full *H* = needed in reductions to have polynomial adversary:

• **ROM** \neq **PRF!!!** In ROM the parties have only oracle access to *H*, in PRF the parties can also see the "code" of *H*. This allow new proof techniques!

Ideal-Cipher Model

Ideal-Cipher Model = pick a random permutation for each key

Ideal-Cipher Model (ICM)

A protocol is said to be defined in the Ideal-Cipher Model (ICM) if all parties (including honest parties when defining the protocol and adversaries) have oracle access to *F* and F^{-1} defined as:

```
Ideal-Cipher Model
T \coloneqq empty assoc. array of assoc. array
F(k \in \{0, 1\}^{\lambda}, x \in \{0, 1\}^{\text{blen}}):
 if T[k][x] undefined:
      T[k][x] \xleftarrow{\$} \{0,1\}^{blen} \setminus T[k].values
 return T[k][x]
F^{-1}(k \in \{0,1\}^{\lambda}, y \in \{0,1\}^{\text{blen}}):
 if ∃x s.t. T[k][x] = y:
     return x
 else:
      x \triangleq \{0, 1\}^{\text{blen}} \setminus T[k].keys
     T[k][x] := yreturn x
```
Main hash functions

Comparison of the main hash functions

Long story short: use SHA-3, or SHA-2 (but not for MAC). **Never use MD5**, SHA-0, SHA-1

