TD 1 Cryptography Engineering 2024

Léo COLISSON PALAIS

Exercice 1: Negligible functions and library manipulation

1. Which of the following functions are negligible? Sort them from the smallest to the largest (asymptotically). Justify your answers.

$$
\frac{1}{2^{\lambda/2}} \qquad \frac{1}{2^{\log(\lambda^2)}} \qquad \frac{1}{\lambda^{\log(\lambda)}} \qquad \frac{1}{\lambda^2} \qquad \frac{1}{2^{\log \lambda^2}} \qquad \frac{1}{\lambda^{1/\lambda}} \qquad \frac{1}{\sqrt{\lambda}} \qquad \frac{1}{2^{\sqrt{\lambda}}}
$$

- 2. Show that if f and g are negligible, so are $f + g$ and fg.
- 3. Show that if $f = poly(\lambda)$ and $g = negl(\lambda)$, $fg = negl(\lambda)$.
- 4. Compute Pr $[A_1 \diamond \mathcal{L}_1 = \text{true}],$ Pr $[A_1 \diamond \mathcal{L}_2 = \text{true}],$ Pr $[A_2 \diamond \mathcal{L}_1 = \text{true}],$ Pr $[A_2 \diamond \mathcal{L}_2 = \text{true}]$ with

Exercice 2: A simple secret sharing scheme

We consider below the following libraries:

- 1. Show that $\mathcal{L}_{\text{ot-raal}} \equiv \mathcal{L}_{\text{ot-rand}}$. Use it to give different proof that the one-time pad (OTP) is one-time secure.
- 2. Show that $\mathcal{L}_{\text{left}} \equiv \mathcal{L}_{\text{right}}$. Can you use directly the fact that $\mathcal{L}_{\text{ot-real}} \equiv \mathcal{L}_{\text{ot-random}}$? If yes, prove it, otherwise, show where the naive proof fails.
- 3. A t -out-of-n threshold secret-sharing scheme (TSSS) consists of two algorithms
	- Share($m \in \mathcal{M}$) that outputs a sequence $s = (s_1, \ldots, s_n)$ of shares,
	- Reconstruct($\{s_1, \ldots, s_k\}$) that outputs a message $m \in \mathcal{M}$ if $k \geq t$ and \perp otherwise.

such that:

- Correctness: for any $m \in \mathcal{M}$ and $U \subseteq \{1, \ldots, n\}$ such that $|U| \geq t$, and for all $s \leftarrow$ Share (m) , we have Reconstruct $(\{s_i \mid i \in U\}) = m$,
- Security: we have

(a) Explain why this is called a "secret-sharing scheme".

(b) Is the following construction secure? If yes, proves it, otherwise, find an explicit attacker.

- (c) We consider a simple 2-out-of-2 secret sharing scheme, where Share is defined as the query in $\mathcal{L}_{\text{left}}$. Describe the Reconstruct procedure.
- (d) Prove that this scheme is secure. Λ jo on the size of μ is a continuated below the size of μ is μ
- (e) Can you generalize this construction to obtain a 2-out-of-k secret sharing scheme for arbitrary $k \in \mathbb{N}^*$ and prove its security?

Exercice 3: Security of OTP

- 1. Someone realizes that the OTP leaks the message when the key is $0 \dots 0$, and proposes to sample the key on $\{0,1\}^{\lambda}\setminus{\{0^{\lambda}\}}$ instead of $\{0,1\}^{\lambda}$. Is this more (or less?) secure? If yes, prove it, otherwise find an attacker attacking the one-time security of the scheme (i.e. the adversary should distinguish $\mathcal{L}_{\text{ots-L}}^{\Sigma}$ from $\mathcal{L}_{\text{ots-R}}^{\Sigma}$).
- 2. To get additional security, Alice decides to encrypt the message twice with OTP. What are the actual impacts in term of security (i) if Alice uses the same k for both encryptions (ii) if Alice uses different keys?
- 3. What is so special regarding the OTP's XOR function? Would it be correct and/or secure with, say, a AND instead of a XOR? Would it work if we interpret strings as integers modulo 2^{λ} and replace the XOR with a modular addition? (prove formally any statements)
- 4. Show that the following encryption scheme does not have one-time secrecy, by constructing a program that distinguishes the two relevant libraries from the one-time secrecy definition.

 $\mathcal{K} = \{1, \ldots, 9\}$ $\mathcal{M} = \{1, \ldots, 9\}$ $\mathcal{C} = \mathbb{Z}_{10}$ Gen: $k \leftarrow \{1, \ldots, 9\}$ return k $Enc(k, m)$: return $k \times m\%10$

5. You (Eve) have intercepted two ciphertexts:

 $c_1 = 1111100101111001110011000001011110000110$ $c_2 = 1111101001100111110111010000100110001000$

You know that both are OTP ciphertexts, encrypted with the *same* key. You know that either (i) c_1 is an encryption of alpha and c_2 is an encryption of bravo or (ii) c_1 is an encryption of delta and c_2 is an encryption of gamma (all converted to binary from ascii in the standard way, i.e. $a = 97, b = 98...$). Which of these two possibilities is correct, and why? Can you recover the key?

Exercice 4: PRG extension and application to ratchet

We want to build a larger PRG H from a smaller length-doubling PRG $G: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda} \times \{0,1\}^{\lambda}$. Here are 3 candidates:

$H_0(s)$:	$H_1(s)$:	
$m \leftarrow G(s)$	$x y \leftarrow G(s)$	$x y \leftarrow G(s)$
$v v \leftarrow G(s)$	$x y \leftarrow G(s)$	
$v v \leftarrow G(s)$	$v v \leftarrow G(s)$	
$v v \leftarrow G(s)$	$v v \leftarrow G(s)$	
$v v \leftarrow G(s)$	$v v \leftarrow G(s)$	

- 1. Which candidate is insecure (find an attack) and secure (prove it)? Why can't you apply the same proof for the other candidates?
- 2. Can you generalize the construction to arbitrarily large (polynomial) length extension?
- 3. Describe (and prove) how this can be used to build a ratchet, i.e. an encryption mechanism that can even protect messages sent before a complete corruption of a party (leaking also the key).