
TD 1 Cryptography Engineering 2024

Léo Colisson Palais

Exercice 1: Negligible functions and library manipulation

1. Which of the following functions are negligible? Sort them from the smallest to the largest (asymp-
totically). Justify your answers.

1

2λ/2
1

2log(λ2)

1

λlog(λ)

1

λ2

1

2log λ2

1

λ1/λ

1√
λ

1

2
√
λ

2. Show that if f and g are negligible, so are f + g and fg.

3. Show that if f = poly(λ) and g = negl(λ), fg = negl(λ).

4. Compute Pr [A1 ⋄ L1 = true], Pr [A1 ⋄ L2 = true], Pr [A2 ⋄ L1 = true], Pr [A2 ⋄ L2 = true] with

A1

r1 ← rand(6)
r2 ← rand(6)

return r1
?
= r2

A2

r1 ← rand(6)
r2 ← rand(6)

return r1
?
≥ 3

L1

rand(n):

r $← Zn

return r

L2

rand(n):

return 0

Exercice 2: A simple secret sharing scheme

We consider below the following libraries:

Lot-real

query(m ∈ {0, 1}λ):
r $← {0, 1}λ
y := r ⊕m

return y

Lot-rand

query(m ∈ {0, 1}λ):
r $← {0, 1}λ
return r

Lleft

query(m ∈ {0, 1}λ):
r $← {0, 1}λ
y := r ⊕m

return (r, y)

Lright

query(m ∈ {0, 1}λ):
r $← {0, 1}λ
y := r ⊕m

return (y, r)

1. Show that Lot-real ≡ Lot-rand. Use it to give different proof that the one-time pad (OTP) is one-time
secure.

2. Show that Lleft ≡ Lright. Can you use directly the fact that Lot-real ≡ Lot-rand? If yes, prove it,
otherwise, show where the naive proof fails.

3. A t-out-of-n threshold secret-sharing scheme (TSSS) consists of two algorithms

• Share(m ∈M) that outputs a sequence s = (s1, . . . , sn) of shares,

• Reconstruct({s1, . . . , sk}) that outputs a message m ∈M if k ≥ t and ⊥ otherwise.

such that:

• Correctness: for any m ∈M and U ⊆ {1, . . . , n} such that |U | ≥ t, and for all s← Share(m),
we have Reconstruct({si | i ∈ U}) = m,

• Security: we have

Ltsss-L

share(mL,mR, U):

if |U | ≥ t, return err

s← share(mL)
return {si | i ∈ U}

≡

Ltsss-R

share(mL,mR, U):

if |U | ≥ t, return err

s← share(mR)
return {si | i ∈ U}

(1)

(a) Explain why this is called a “secret-sharing scheme”.

1

(b) Is the following construction secure? If yes, proves it, otherwise, find an explicit attacker.

(c) We consider a simple 2-out-of-2 secret sharing scheme, where Share is defined as the query in
Lleft. Describe the Reconstruct procedure.

(d) Prove that this scheme is secure.

Hint:doacasedistinctiononthesize/valueofU

(e) Can you generalize this construction to obtain a 2-out-of-k secret sharing scheme for arbitrary
k ∈ N∗ and prove its security?

Exercice 3: Security of OTP

1. Someone realizes that the OTP leaks the message when the key is 0 . . . 0, and proposes to sample
the key on {0, 1}λ \{0λ} instead of {0, 1}λ. Is this more (or less?) secure? If yes, prove it, otherwise
find an attacker attacking the one-time security of the scheme (i.e. the adversary should distinguish
LΣ

ots-L from LΣ
ots-R).

2. To get additional security, Alice decides to encrypt the message twice with OTP. What are the
actual impacts in term of security (i) if Alice uses the same k for both encryptions (ii) if Alice uses
different keys?

3. What is so special regarding the OTP’s XOR function? Would it be correct and/or secure with,
say, a AND instead of a XOR? Would it work if we interpret strings as integers modulo 2λ and
replace the XOR with a modular addition? (prove formally any statements)

4. Show that the following encryption scheme does not have one-time secrecy, by constructing a pro-
gram that distinguishes the two relevant libraries from the one-time secrecy definition.

K = { 1, . . . , 9 }
M = { 1, . . . , 9 }
C = Z10

Gen:
k ← { 1, . . . , 9 }
return k

Enc(k,m):

return k ×m%10

5. You (Eve) have intercepted two ciphertexts:

c1 = 1111100101111001110011000001011110000110

c2 = 1111101001100111110111010000100110001000

You know that both are OTP ciphertexts, encrypted with the same key. You know that either
(i) c1 is an encryption of alpha and c2 is an encryption of bravo or (ii) c1 is an encryption of
delta and c2 is an encryption of gamma (all converted to binary from ascii in the standard way, i.e.
a = 97, b = 98 . . .). Which of these two possibilities is correct, and why? Can you recover the key?

Exercice 4: PRG extension and application to ratchet

We want to build a larger PRG H from a smaller length-doubling PRG G : {0, 1}λ → {0, 1}λ × {0, 1}λ.
Here are 3 candidates:

H0(s):

m← G(s)
return m∥m

H1(s):

x∥y ← G(s)
u∥v ← G(s)
return x∥u∥v

H2(s):

x∥y ← G(s)
u∥v ← G(s)
return x∥y∥u∥v

1. Which candidate is insecure (find an attack) and secure (prove it)? Why can’t you apply the same
proof for the other candidates?

2. Can you generalize the construction to arbitrarily large (polynomial) length extension?

3.⋆ Describe (and prove) how this can be used to build a ratchet, i.e. an encryption mechanism that
can even protect messages sent before a complete corruption of a party (leaking also the key).

2

