TD 1 Cryptography Engineering 2024

Léo Colisson Palais

Exercice 1: Negligible functions and library manipulation

1. Which of the following functions are negligible? Sort them from the smallest to the largest (asymptotically). Justify your answers.

$$\frac{1}{2^{\lambda/2}} \qquad \frac{1}{2^{\log(\lambda^2)}} \qquad \frac{1}{\lambda^{\log(\lambda)}} \qquad \frac{1}{\lambda^2} \qquad \frac{1}{2^{\log\lambda^2}} \qquad \frac{1}{\lambda^{1/\lambda}} \qquad \frac{1}{\sqrt{\lambda}} \qquad \frac{1}{2^{\sqrt{\lambda}}}$$

- 2. Show that if f and g are negligible, so are f + g and fg.
- 3. Show that if $f = \operatorname{poly}(\lambda)$ and $g = \operatorname{negl}(\lambda)$, $fg = \operatorname{negl}(\lambda)$.
- 4. Compute $\Pr[\mathcal{A}_1 \diamond \mathcal{L}_1 = \mathsf{true}], \Pr[\mathcal{A}_1 \diamond \mathcal{L}_2 = \mathsf{true}], \Pr[\mathcal{A}_2 \diamond \mathcal{L}_1 = \mathsf{true}], \Pr[\mathcal{A}_2 \diamond \mathcal{L}_2 = \mathsf{true}]$ with

\mathcal{A}_1	\mathcal{A}_2	\mathcal{L}_1	\mathcal{L}_2
$ \begin{array}{c} r_1 \leftarrow \text{RAND}(6) \\ r_2 \leftarrow \text{RAND}(6) \\ \text{return } r_1 \stackrel{?}{=} r_2 \end{array} $	$ \begin{array}{c} r_1 \leftarrow \text{RAND}(6) \\ r_2 \leftarrow \text{RAND}(6) \\ \text{return } r_1 \stackrel{?}{\geq} 3 \end{array} $	$\frac{\text{RAND}(n):}{r \stackrel{\text{(s)}}{\leftarrow} \mathbb{Z}_n}$ return r	$\frac{1}{\frac{\text{RAND}(n):}{\text{return }0}}$

Exercice 2: A simple secret sharing scheme

We consider below the following libraries:

- 1. Show that $\mathcal{L}_{ot-real} \equiv \mathcal{L}_{ot-rand}$. Use it to give different proof that the one-time pad (OTP) is one-time secure.
- 2. Show that $\mathcal{L}_{left} \equiv \mathcal{L}_{right}$. Can you use directly the fact that $\mathcal{L}_{ot-real} \equiv \mathcal{L}_{ot-rand}$? If yes, prove it, otherwise, show where the naive proof fails.
- 3. A t-out-of-n threshold secret-sharing scheme (TSSS) consists of two algorithms
 - Share $(m \in \mathcal{M})$ that outputs a sequence $s = (s_1, \ldots, s_n)$ of shares,
 - Reconstruct($\{s_1, \ldots, s_k\}$) that outputs a message $m \in \mathcal{M}$ if $k \ge t$ and \perp otherwise.

such that:

- Correctness: for any $m \in \mathcal{M}$ and $U \subseteq \{1, \ldots, n\}$ such that $|U| \ge t$, and for all $s \leftarrow \mathsf{Share}(m)$, we have $\mathsf{Reconstruct}(\{s_i \mid i \in U\}) = m$,
- Security: we have

$\mathcal{L}_{ ext{tsss-L}}$		$\mathcal{L}_{ ext{tsss-R}}$
$\frac{\text{SHARE}(m_L, m_R, U):}{\text{if } U \ge t, \text{ return err}} \\ s \leftarrow \text{SHARE}(m_L) \\ \text{return } \{s_i \mid i \in U\}$	=	$\frac{\text{SHARE}(m_L, m_R, U):}{\text{if } U \ge t, \text{ return } \text{err}} \\ s \leftarrow \text{SHARE}(m_R) \\ \text{return } \{s_i \mid i \in U\}$

(a) Explain why this is called a "secret-sharing scheme".

(b) Is the following construction secure? If yes, proves it, otherwise, find an explicit attacker.

$\mathcal{M} = \{0, 1\}^{500}$	Share(m):	
$f = \{0, 1\}$	split <i>m</i> into $m = s_1 \ \cdots \ s_5$,	$Reconstruct(s_1, \ldots, s_5)$:
n = 5	where each $ s_i = 100$	return $s_1 \ \cdots \ s_5$
n = 3	return (s_1,\ldots,s_5)	

- (c) We consider a simple 2-out-of-2 secret sharing scheme, where Share is defined as the QUERY in \mathcal{L}_{left} . Describe the Reconstruct procedure.
- (d) Prove that this scheme is secure. U to $\frac{\partial \log v}{\partial \sin v}$ and $\frac{\partial \log v}{\partial \sin v}$ and $\frac{\partial \log v}{\partial \sin v}$ and $\frac{\partial \log v}{\partial \sin v}$
- (e) Can you generalize this construction to obtain a 2-out-of-k secret sharing scheme for arbitrary $k \in \mathbb{N}^*$ and prove its security?

Exercice 3: Security of OTP

- 1. Someone realizes that the OTP leaks the message when the key is 0...0, and proposes to sample the key on $\{0, 1\}^{\lambda} \setminus \{0^{\lambda}\}$ instead of $\{0, 1\}^{\lambda}$. Is this more (or less?) secure? If yes, prove it, otherwise find an attacker attacking the one-time security of the scheme (i.e. the adversary should distinguish $\mathcal{L}_{ots-L}^{\Sigma}$ from $\mathcal{L}_{ots-R}^{\Sigma}$).
- 2. To get additional security, Alice decides to encrypt the message twice with OTP. What are the actual impacts in term of security (i) if Alice uses the same k for both encryptions (ii) if Alice uses different keys?
- 3. What is so special regarding the OTP's XOR function? Would it be correct and/or secure with, say, a AND instead of a XOR? Would it work if we interpret strings as integers modulo 2^{λ} and replace the XOR with a modular addition? (prove formally any statements)
- 4. Show that the following encryption scheme does not have one-time secrecy, by constructing a program that distinguishes the two relevant libraries from the one-time secrecy definition.

5. You (Eve) have intercepted two ciphertexts:

 $c_1 = 111110010111100111000001011110000110$ $c_2 = 111110100110011110110000100110001000$

You know that both are OTP ciphertexts, encrypted with the *same* key. You know that either $(i) c_1$ is an encryption of **alpha** and c_2 is an encryption of **bravo** or $(ii) c_1$ is an encryption of **delta** and c_2 is an encryption of **gamma** (all converted to binary from ascii in the standard way, i.e. $\mathbf{a} = 97, \mathbf{b} = 98...$). Which of these two possibilities is correct, and why? Can you recover the key?

Exercice 4: PRG extension and application to ratchet

We want to build a larger PRG *H* from a smaller length-doubling PRG $G: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda} \times \{0,1\}^{\lambda}$. Here are 3 candidates:

- 1. Which candidate is insecure (find an attack) and secure (prove it)? Why can't you apply the same proof for the other candidates?
- 2. Can you generalize the construction to arbitrarily large (polynomial) length extension?
- ★ 3. Describe (and prove) how this can be used to build a ratchet, i.e. an encryption mechanism that can even protect messages sent before a complete corruption of a party (leaking also the key).