
Exam Cryptography Engineering 2024

Léo Colisson Palais

Exercice 1: Combining encryptions for better security

Alice and Bob want to securely exchange a messagem ∈M := {0, 1}∗. They have access to two encryption
schemes (Gen0 : N→ K0,Enc0 : K0×M→ C0,Dec0 : K0×C0 →M) and (Gen1 : N→ K1,Enc1 : K1×M→
C1,Dec1 : K1×C1 →M), but they only know that at least one of them is secure, without knowing which
one is actually secure. In the following exercise, we will study how to perform this securely.

1. (0.5 pts) Here are 3 equivalences between libraries1: which one corresponds to the security definition
of indistinguishability under (variable-length plaintext) chosen plaintext attack (IND-CPA)? In the

following, we will name the corresponding libraries as, respectively, LGen,Enc
cpa-L and LGen,Enc

cpa-R .

3 eavesdrop(mL,mR ∈M):

4 if |mL| ≠ |mR| return err

0 k ← Gen(1λ)

5L c := Enc(k,mL)
7 return c

≈

3 eavesdrop(mL,mR ∈M):

4 if |mL| ≠ |mR| return err

0 k ← Gen(1λ)

5R c := Enc(k,mR)

7 return c

(1)

1 k ← Gen(1λ)
3 eavesdrop(mL,mR ∈M):

4 if |mL| ≠ |mR| return err

5L c := Enc(k,mL)
7 return c

≈

1 k ← Gen(1λ)
3 eavesdrop(mL,mR ∈M):

4 if |mL| ≠ |mR| return err

5R c := Enc(k,mR)

7 return c

(2)

1 k ← Gen(1λ)
2 S := ∅
3 eavesdrop(mL,mR ∈M):

4 if |mL| ≠ |mR| return err

5L c := Enc(k,mL)
6 S := S ∪ {c}
7 return c
8 decrypt(c ∈ C):
9 if c ∈ S return err

10 return Dec(k, c)

≈

1 k ← Gen(1λ)
2 S := ∅
3 eavesdrop(mL,mR ∈M):

4 if |mL| ≠ |mR| return err

5R c := Enc(k,mR)

6 S := S ∪ {c}
7 return c
8 decrypt(c ∈ C):
9 if c ∈ S return err

10 return Dec(k, c)

(3)

Correction. The definition corresponding to CPA security is the second definition (eq. (2)).

2. (0.5 pts) For each of these three security definitions, specify if the One-Time Pad (OTP) encryption
scheme is secure according to this definition (we temporarily assume for simplicity that the message
spaceM is equal to the key space K andM = K = {0, 1}n). No formal proof is expected here, but
justify your answer with one or two sentences.

Correction. (a) OTP is secure according to the first definition, as this corresponds to the notion
of one-time secrecy seen in the course: OTP is known to be secure if a fresh key is picked at
every new encryption.

(b) OTP is NOT secure according to the second definition (CPA security): the same key is reused
multiple times, and OTP is know to be unsecure if the key is reused more than once.

1The gray numbers like 1 are just used to label lines so that you can quickly refer to them without rewriting them
fully.
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(c) OTP is NOT secure according to the last definition (CCA security), since the adversary can
apply the same attack as in the CPA security definition.

3. (1.25 pts) To securely encrypt a message using Enc0 and Enc1 without knowing which one is actually
secure, Alice proposes to encrypt m as follows:

Enc(k := (k0, k1),m) := Enc1(k1,Enc0(k0,m)) (4)

where keys (k0, k1) are generated by a procedure (k0, k1) ← Gen(1λ) by sampling k0 ← Gen0(1
λ)

and k1 ← Gen1(1
λ).

Assuming that Enc1 is IND-CPA secure and that |Enc1(k,m)| = l|m| for some integer l ≥ 1,
formally show that there exists Enc0 such that Enc is not IND-CPA secure (more precisely, exhibit
a function Enc0 and an adversary A following the Joy of Cryptography notation seen in the course,
and compute its advantage according to the IND-CPA security definition).

Hint: you can choose Enc0 arbitrarily, in particular it may not preserve the length of its input.

Correction. We define K0 = {0} (a single key k0 = 0 is defined as we won’t use it), Gen(1λ) returns
k0 := 0, and Enc0(k,m) := m if m starts with a 0 and Enc0(k,m) := m∥m otherwise. Hence
|Enc0(k, 0)| = 1 and |Enc0(k, 1)| = 2. We also define

A

return |eavesdrop(0, 1)| ?
= 2l

(5)

We compute now the advantage of A. We can simplify

A ⋄ Lcpa-L ≡
k0 := 0

k1 ← Gen1(1
λ)

return |Enc1(k0,Enc0(k1, 0))|
?
= 2l

(6)

But since |Enc1(k0,Enc0(k1, 0))| = l|Enc0(k1, 0)| = l, we have Pr
[
A ⋄ Lcpa-L

?
= true

]
= 0. Similarly:

A ⋄ Lcpa-R ≡
k0 := 0

k1 ← Gen1(1
λ)

return |Enc1(k0,Enc0(k1, 1))|
?
= 2l

(7)

but since |Enc1(k0,Enc0(k1, 1))| = l|Enc0(k1, 1)| = 2l, we have Pr
[
A ⋄ Lcpa-R

?
= true

]
= 1. Hence,

the advantage of A is∣∣∣Pr [A ⋄ Lcpa-R
?
= true

]
− Pr

[
A ⋄ Lcpa-L

?
= true

]∣∣∣ = |1− 0| = 1 (8)

which is non-negligible. Hence, Enc is not IND-CPA secure, concluding the proof.

4. In order to avoid the above attack, Alice has the idea to use a so-called secret-sharing operation
to split the message m into two “shares” m0 and m1 such that m = m0 ⊕ m1, and encrypt m0

with Enc0 and m1 with Enc1. More precisely, we consider the procedure (k0, k1)← Gen(1λ) defined
above and the encryption as:

Enc(k := (k0, k1),m)

11 m0
$← {0, 1}|m|

12 m1 := m0 ⊕m

13 return (Enc0(k0,m0),Enc1(k1,m1))

(9)

(a) (0.75 pts) Describe the decryption algorithm Dec and prove its correctness, i.e. that:

Pr [Dec((k0, k1),Enc((k0, k1),m)) = m ] = 1 (10)
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Correction. We define

Dec(k := (k0, k1), (c0, c1))

return Dec0(k0, c0)⊕ Dec1(k1, c1)
(11)

This decryption is correct since for any m ∈M:

Pr [Dec((k0, k1),Enc((k0, k1),m)) = m ] (12)

= Pr
m0

$←{0,1}|m|
[Dec((k0, k1), (Enc0(k0,m0),Enc1(k1,m0 ⊕m))) = m ] (13)

= Pr
m0

$←{0,1}|m|
[Dec0(k0,Enc0(k0,m0))⊕ Dec1(k1,Enc1(k1,m0 ⊕m)) = m ] (14)

= Pr
m0

$←{0,1}|m|
[m0 ⊕m0 ⊕m = m ] (15)

= Pr
m0

$←{0,1}|m|
[m = m ] (16)

= 1 (17)

(b) (1.25 pts) Assuming that Enc1 is IND-CPA secure, show that Enc is IND-CPA secure (justify
all equations and details all steps).

NB: to save typing, you can name your intermediate libraries, number lines like 20 (just use
numbers greater than 18 to avoid naming clash) and reuse this number instead of rewriting
the whole line.

Correction. To prove that Enc is IND-CPA secure, we need to show that Lcpa-L ≈ Lcpa-R:

Lcpa-L ≡

k ← Gen(1λ)
eavesdrop(mL,mR ∈M):

if |mL| ≠ |mR| return err

c := Enc(k,mL)
return c

(Definition Lcpa-L)

≡

k0 ← Gen0(1
λ)

k1 ← Gen1(1
λ)

eavesdrop(mL,mR ∈M):

if |mL| ≠ |mR| return err

m0
$← {0, 1}|mL|

m1 := m0 ⊕mL

c0 := Enc0(k,m0)
c1 := Enc1(k,m1)
return (c0, c1) a

(Def Gen and Enc)

≡

L0

k0 ← Gen0(1
λ)

eavesdrop(mL,mR ∈M):

if |mL| ≠ |mR| return err

m0
$← {0, 1}|mL|

c0 := Enc0(k,m0)
c1 := eavesdrop(m0 ⊕mL,m0 ⊕mR)
return (c0, c1)

⋄ LGen1,Enc1
cpa-L (Externalize)

≈ L0 ⋄ LGen1,Enc1
cpa-R (Enc1 is IND-CPA secure)
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≡

k0 ← Gen0(1
λ)

k1 ← Gen1(1
λ)

eavesdrop(mL,mR ∈M):

if |mL| ≠ |mR| return err

m0
$← {0, 1}|mR|

m1 := m0 ⊕mR

c0 := Enc0(k,m0)
c1 := Enc1(k,m1)
return (c0, c1)

(Inline and |mL| = |mR| after first condition)

≡ Lcpa-R (Def Enc and Gen)

(c) (0.75 pts) For any m ∈ {0, 1}n, prove that the following distribution is a uniform distribution
over S := {(m′0,m′1) ∈ {0, 1}n × {0, 1}n | m′0 ⊕m′1 = m}, i.e. for any (m′0,m

′
1) ∈ {0, 1}n ×

{0, 1}n such that m = m′0 ⊕m′1:

Pr
m0

$←{0,1}n
m1:=m0⊕m

[ (m0,m1) = (m′0,m
′
1) ] =

1

2n
(18)

Similarly, prove that

Pr
m0

$←{0,1}n
m1:=m0⊕m

[ (m1,m0) = (m′0,m
′
1) ] =

1

2n
(19)

and conclude that

share-1

14 sample(m) :

15 m0
$← {0, 1}n

16 m1 := m0 ⊕m

17.1 return (m0,m1)

≡

share-2

14 sample(m) :

15 m0
$← {0, 1}n

16 m1 := m0 ⊕m

17.2 return (m1,m0)

(20)

Correction. Let m ∈ {0, 1}n, and (m′0,m
′
1) ∈ {0, 1}n × {0, 1}n such that

m = m′0 ⊕m′1 (21)

Then:

Pr
m0

$←{0,1}n
m1:=m0⊕m

[ (m0,m1) = (m′0,m
′
1) ] = Pr

m0
$←{0,1}n

m1:=m0⊕m

[m0 = m′0 ∧m0 ⊕m = m′1 ]

(Definition equality on tupple)

= Pr
m0

$←{0,1}n
[m0 = m′0 ∧m0 ⊕m = m′1 ] (Definition m1)

= Pr
m0

$←{0,1}n
[m0 = m′0 ]

(m′0 ⊕m = m′1 true since m′0 ⊕m′1 = m by assumption)

=
1

2n
(m0 is uniformly sampled)
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For the similar equation, two methods. Method 1:

Pr
m0

$←{0,1}n
m1:=m0⊕m

[ (m1,m0) = (m′0,m
′
1) ] = Pr

m0
$←{0,1}n

m1:=m0⊕m

[m1 = m′0 ∧m0 = m′1 ] (Equality on tupple)

= Pr
m0

$←{0,1}n
[m0 ⊕m = m′0 ∧m0 = m′1 ] (Def. m1)

= Pr
m0

$←{0,1}n
[m′1 ⊕m = m′0 ∧m0 = m′1 ]

(The equation is true iff m0 = m′1, so we can replace m0 with m′1)

= Pr
m0

$←{0,1}n
[m0 = m′1 ]

(m′1 ⊕m = m′0 is always true since m = m′0 ⊕m′1 by assumption)

(22)

Or method 2:

Pr
m0

$←{0,1}n
m1:=m0⊕m

[ (m1,m0) = (m′0,m
′
1) ] = Pr

m0
$←{0,1}n

m1:=m0⊕m

[ (m0,m1) = (m′1,m
′
0) ]

((a, b) = (c, d) iff (b, a) = (d, c))

but m′ := (m′1,m
′
0) ∈ S since m′1⊕m′0 = m (eq. (21)), and we just proved before that for any

m′ ∈ S, Prm0
$←{0,1}n

m1:=m0⊕m
[ (m1,m0) = (m′0,m

′
1) ] =

1
2n , concluding the proof.

The equivalence between the two libraries is now trivial, since share-1 corresponds to the first
studied distribution, and share-2 corresponds to the second distribution, shown to be equal to
the first one, hence indistinguishable.

(d) (1 pts) Assuming that Enc0 is IND-CPA secure, show that Enc is IND-CPA secure.

NB: to save typing, you can apply the same advice as in the above proof involving Enc1, and
you can also skip the externalize-replace-inline operations by only writing the starting and
ending libraries, and quickly describing all skipped steps.

Correction. The proof is similar to the security proof assuming that Enc0 is IND-CPA secure,
except that we first use eq. (20) to exchange m0 and m1, allowing us to apply then the same
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reasoning as before. More formally:

Lcpa-L ≡

k0 ← Gen0(1
λ)

k1 ← Gen1(1
λ)

eavesdrop(mL,mR ∈M):

if |mL| ≠ |mR| return err

m0
$← {0, 1}|mL|

m1 := m0 ⊕mL

c0 := Enc0(k,m0)
c1 := Enc1(k,m1)
return (c0, c1)

(Def Gen and Enc)

≡

L1

k0 ← Gen0(1
λ)

k1 ← Gen1(1
λ)

eavesdrop(mL,mR ∈M):

if |mL| ≠ |mR| return err

(m0,m1)← sample(mL)
c0 := Enc0(k,m0)
c1 := Enc1(k,m1)
return (c0, c1)

⋄ sample-1 (Externalize)

≡ L1 ⋄ sample-2 (Previous question)

≡

k0 ← Gen0(1
λ)

k1 ← Gen1(1
λ)

eavesdrop(mL,mR ∈M):

if |mL| ≠ |mR| return err

m1
$← {0, 1}|mL|

m0 := m1 ⊕mL

c0 := Enc0(k,m0)
c1 := Enc1(k,m1)
return (c0, c1)

(Inline)

We remark now that this is exactly like the case where Enc1 was assumed to be IND-CPA,
except that now m0 plays the role of m1 and Enc0 plays the role of Enc1: we can therefore as
before externalize the encryption of Enc0 with eavesdrop(m1⊕mL,m1⊕mR) and LGen1,Enc1

ind-cpa-L ,

exchange LGen1,Enc1
ind-cpa-R with LGen1,Enc1

ind-cpa-R (possible since Enc1 is IND-CPA secure), and we inline
again the source code. This gives us:

Lcpa-L ≈

k0 ← Gen0(1
λ)

k1 ← Gen1(1
λ)

eavesdrop(mL,mR ∈M):

if |mL| ≠ |mR| return err

m1
$← {0, 1}|mR|

m0 := m1 ⊕mR

c0 := Enc0(k,m0)
c1 := Enc1(k,m1)
return (c0, c1)

(Inline)

(23)

We have now exactly the same code as in eq. (Inline), except that mL is replaced with mR. We
can therefore apply exactly the same operation as before but in reverse (externalize sample-2,
replace with sample-1) to recover:

Lcpa-L ≈ Lcpa-R (24)

concluding the proof.
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